

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Sumatra 0.7.4 documentation

Sumatra: automated tracking of scientific computations

Sumatra is a tool for managing and tracking projects based on numerical
simulation and/or analysis, with the aim of supporting reproducible research.
It can be thought of as an automated electronic lab notebook for computational
projects.

It consists of:

	a command-line interface, smt, for launching simulations/analyses with
automatic recording of information about the experiment, annotating these
records, linking to data files, etc.

	a web interface with a built-in web-server, smtweb, for browsing and
annotating simulation/analysis results.

	a LaTeX package and Sphinx extension for including Sumatra-tracked figures and
links to provenance information in papers and other documents.

	a Python API, on which smt and smtweb are based, that can be used in your own
scripts in place of using smt, or could be integrated into a GUI-based
application.

Table of Contents

	Background

	Installation

	Getting started

	Managing a research project with Sumatra

	Using the web interface

	Parameter files

	Input and output data

	Parallel computations

	Reproducible publications: including and linking to provenance information in documents

	Exporting and reporting

	Using the Sumatra API within your own scripts

	Record stores

	Upgrading your projects

	Extending Sumatra with plug-ins

	Graphical user interfaces

	smt command reference

	Developers’ guide

	API reference

	Frequently asked questions

	Getting support

	Release notes

	Authors and contributors

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

Background

Reproducibility, provenance and project management

Reproducibility of experiments is one of the foundation stones of science.
A related concept is provenance, being able to track a given scientific result,
such as a figure in an article, back through all the analysis steps (verifying
the correctness of each) to the original raw data, and the experimental protocol
used to obtain it.

In computational, simulation- or numerical analysis-based science, reproduction of previous
experiments, and establishing the provenance of results, ought to be easy, given
that computers are deterministic, not suffering from the problems of
inter-subject and trial-to-trial variability that make reproduction of
biological experiments more challenging.

In general, however, it is not easy, perhaps due to the complexity of our code
and our computing environments, and the difficulty of capturing every essential
piece of information needed to reproduce a computational experiment using
existing tools such as spreadsheets, version control systems and paper
noteboooks.

What needs to be recorded?

To ensure reproducibility of a computational experiment we need to record:

	the code that was run

	any parameter files and command line options

	the platform on which the code was run

For an individual researcher trying to keep track of a research project with
many hundreds or thousands of simulations and/or analyses, it is also useful to record the
following:

	the reason for which the simulation/analysis was run

	a summary of the outcome of the simulation/analysis

Recording the code might mean storing a copy of the executable, or the source
code (including that of any libraries used), the compiler used (including version)
and the compilation procedure (e.g. the Makefile, etc.)
For interpreted code, it might mean recording the version of the interpreter
(and any options used in compiling it) as well as storing a copy of the
main script, and of any external modules or packages that are included or
imported into the script file.

For projects using version control, “storing a copy of the code” may be replaced
with “recording the URL of the repository and the revision number”.

The platform includes the processor architecture(s), the operating system(s),
the number of processors (for distributed simulations), etc.

Tools for recording provenance information

The traditional way of recording the information necessary to reproduce an
experiment is by noting down all details in a paper notebook, together with
copies or print-outs of any results. More modern approaches may replace or
augment the paper notebook with a spreadsheet or other hand-rolled database, but
still with the feature that all relevant information is entered by hand.

In other areas of science, particularly in applied science laboratories with
high-throughput, highly-standardised procedures, electronic lab notebooks and
laboratory information management systems (LIMS) are in widespread use, but none
of these tools seem to be well suited for tracking simulation experiments.

Challenges for tracking computational experiments

In developing a tool for tracking simulation experiments, something like an
electronic lab notebook for computational science, there are a number of
challenges:

	different researchers have very different ways of working and different
workflows: command line, GUI, batch-jobs (e.g. in supercomputer
environments), or any combination of these for different components (simulation,
analysis, graphing, etc.) and phases of a project.

	some projects are essentially solo endeavours, others collaborative projects,
possibly distributed geographically.

	as much as possible should be recorded automatically. If it is left to the
researcher to record critical details there is a risk that some details will
be missed or left out, particularly under pressure of deadlines.

The solution we propose is to develop a core library, implemented as a Python
package, sumatra, and then to develop a series of interfaces that build on
top of this: a command-line interface, a web interface, a graphical interface.
Each of these interfaces will enable:

	launching simulations/analyses with automated recording of provenance information;

	managing a computational project: browsing, viewing, deleting simulations/analyses.

Alternatively, modellers can use the sumatra package directly in their own
code, to enable provenance recording, then simply launch experiments in their
usual way.

The core sumatra package needs to:

	interact with version control systems, such as Subversion [http://subversion.tigris.org/], Git [http://git-scm.com], Mercurial [https://mercurial.selenic.com/], or
Bazaar [http://bazaar.canonical.com/];

	support launching serial, distributed (via MPI [http://en.wikipedia.org/wiki/Message_Passing_Interface]) or batch computations;

	link to data generated by the computation, whether stored in files or databases;

	support all and any command-line drivable simulation or analysis programs;

	support both local and networked storage of information;

	be extensible, so that components can easily be added for new version control
systems, etc.

	be very easy to use, otherwise it will only be used by the very conscientious.

Further resources

For further background, see the following article:

Davison A.P. (2012) Automated capture of experiment context for easier
reproducibility in computational research.
Computing in Science and Engineering 14: 48-56 [preprint [http://andrewdavison.info/media/files/reproducible_research_CiSE.pdf]]

For more detail on how Sumatra is implemented, see:

Davison A.P., Mattioni M., Samarkanov D. and Teleńczuk B. (2014)
Sumatra: A Toolkit for Reproducible Research.
In: Implementing Reproducible Research, edited by V. Stodden, F. Leisch and R.D. Peng,
Chapman & Hall/CRC: Boca Raton, Florida., pp. 57-79. [PDF [https://osf.io/w6fp4/osffiles/Andrew_Davison_chapter.pdf/version/1/download/]]

You might also be interested in watching a talk given at a workshop [http://www.stodden.net/AMP2011/] on
“Reproducible Research-Tools and Strategies for Scientific Computing” in Vancouver, Canada in July 2011.
[video with slides [http://mediasite.mediagroup.ubc.ca/MediaGroup/Viewer/?peid=291fc2e10e3d4adab212c8949577b32e1d] (Silverlight required)] [video only [https://www.youtube.com/watch?v=7VcDvxvjqrc] (YouTube)] [slides [http://www.stodden.net/AMP2011/slides/sumatra_amp2011.pdf]].

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

Installation

To run Sumatra you will need Python installed on your machine. If you are running
Linux or OS X, you almost certainly already have it. If you don’t have Python,
you can install it from python.org [https://www.python.org], or install one of the
“value-added” distributions aimed at scientific users of Python: Enthought [http://www.enthought.com/products/epd/],
Python(x,y) [http://code.google.com/p/pythonxy/] or Anaconda [http://docs.continuum.io/anaconda/].

The easiest way to install Sumatra is directly from the Python Package Index [https://pypi.python.org/pypi/Sumatra/]
(PyPI):

$ pip install sumatra

Alternatively, you can download the Sumatra package from either PyPI or the
INCF Software Centre [http://software.incf.org/software/sumatra/download] and install it as follows:

$ tar xzf Sumatra-0.7.4.tar.gz
$ cd Sumatra-0.7.4
python setup.py install

The last step may need to be run as root, or using sudo, although in general
we recommend installing in an isolated environment created using virtualenv or conda.

Installing Django

If you wish to use the web interface, you will also need to install Django [https://www.djangoproject.com]
version 1.6 or later. On Linux, you may be able to do this via your package
management system: see https://code.djangoproject.com/wiki/Distributions.

Otherwise, it is very easy to install manually: see
https://docs.djangoproject.com/en/dev/topics/install/#installing-official-release

You will also need to install the parameters, django-tagging [https://pypi.python.org/pypi/django-tagging/] and docutils [http://docutils.sourceforge.net] packages,
which may be in your package management system, otherwise they can be installed
using pip:

$ pip install parameters
$ pip install django-tagging
$ pip install docutils

Installing Python bindings for your version control system

Sumatra currently supports Mercurial [https://mercurial.selenic.com/], Subversion [http://subversion.tigris.org/], Git [http://git-scm.com/] and Bazaar [http://bazaar.canonical.com/].
If you are using Subversion, you will need to install the pysvn bindings [http://pysvn.tigris.org/project_downloads.html].
Since Bazaar is mostly written in Python, just installing the main Bazaar
package is sufficient. For Git, you need to install the GitPython [https://pypi.python.org/pypi/GitPython/] package.
For Mercurial, you need to install the hgapi [https://pypi.python.org/pypi/hgapi/] package.

Command completion for bash

Sumatra comes with a limited bash completion facility.
You can install it to you system by sourcing the file
smt-completion.sh in your .bashrc or .profile.
By default, Sumatra installs this script to your
`/usr/bin directory by default but moving it
elsewhere (e.g. to ~/.bash_completion.d/)
is recommended.

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

Getting started

Let us assume that you already have a project based on numerical simulation,
which you wish to start managing using Sumatra, and that the code for this
project is under version control. Note that the following is equally valid if
your project is based on data analysis rather than, or as well as,
simulation: just mentally replace “simulation” with “analysis” in the following.

Change to the working directory for your project, and then create a new Sumatra
project in this directory using the smt init command:

$ cd myproject
$ smt init MyProject

where MyProject is the project name. This creates a sub-directory named .smt.

Sumatra tracks data files created by your simulation by searching for newly
created files within a given directory tree. By default, it assumes that your
simulation will create files in a sub-directory Data of your working directory.
(You can change this by providing the --datapath option to smt init or
smt configure.)

Now let’s run a simulation. We will assume that your simulation code is written
in Python [https://www.python.org], and that you run the simulation by executing a file called main.py,
passing it the name of a parameter file on the command line, i.e., you would
normally run a simulation using:

$ python main.py default.param

To run it using Sumatra, you would use:

$ smt run --executable=python --main=main.py default.param

Now we can see a list of the simulations we have run:

$ smt list
20140418-154800

This shows the label for each simulation we have run. Since we did not specify
a label, one was automatically generated from the timestamp. To see more detail,
use the --long option:

$ smt list --long
--
Label : 20140418-154800
Timestamp : 2014-04-18 15:48:00.439809
Reason :
Outcome :
Duration : 0.216287851334
Repository : GitRepository at /path/to/myproject
Main_File : main.py
Version : a75cf131a69ba831e915bc6a09987e832e65e7bc
Script_Arguments : <parameters>
Executable : Python (version: 2.6.8) at /usr/local/bin/python
Parameters : seed = 65785 # seed for random number generator
 : distr = "uniform" # statistical distribution to draw values from
 : n = 100 # number of values to draw
Input_Data : []
Launch_Mode : serial
Output_Data : [example2.dat(43a47cb379df2a7008fdeb38c6172278d000fdc4)]
User : Arthur Dent <dent@example.com>
Tags :
Repeats : None

(most options also have a short form, -l in this case.)

It is a bit tedious to have to tell Sumatra which simulator and which file to
run every time. Presumably, the name of the main file changes infrequently and
the simulator almost never. Therefore, these can be set as defaults for a given
project:

$ smt configure --executable=python --main=main.py

(you could also have given these options to smt init. init is used to create
a project and configure to change its configuration later, but they mostly
accept the same arguments).

Now you can run a simulation with a much shorter command line:

$ smt run default.param

To see the current configuration of your project, use the info command:

$ smt info
Project name : MyProject
Default executable : Python (version: 2.6.8) at /usr/local/bin/python
Default repository : GitRepository at /path/to/myproject
Default main file : main.py
Default launch mode : serial
Data store (output) : /path/to/myproject/Data
. (input) : /
Record store : Django (/path/to/myproject/.smt/records)
Code change policy : error
Append label to : None
Label generator : timestamp
Timestamp format : %Y%m%d-%H%M%S
Sumatra version : 0.7.4

Sumatra automatically records the identity and versions of the simulation files
and the simulator executable, stores links to any files created by the
simulation, records any error messages, the date and time at which the simulation
was run, and its duration. You may also add your own annotations, in several
different ways. On running the simulation, you can specify a unique label, and
the reason for which you are running the simulation:

$ smt run --label=haggling --reason="determine whether the gourd is worth 3 or 4 shekels" romans.param

After the simulation is complete, you can add a description of the outcome:

$ smt comment "apparently, it is worth NaN shekels."

This adds the comment to the most recent simulation. You may also describe the outcome
of an earlier simulation, by specifying its label:

$ smt comment 20140418-154800 "Eureka! Nobel prize here we come."

You can also tag a simulation record with one or more short keywords:

$ smt tag foobar
$ smt tag barfoo

and remove tags:

$ smt tag --remove barfoo

The parameter file may be in any format - it is your script which is responsible
for reading it. However, if it is in one of the formats that Sumatra understands
then it is possible to modify parameter values
on the command line. Suppose default.param contains a parameter tau_m = 20.0, as
well as a number of other parameters, then:

$ smt run --reason="test effect of a smaller time constant" default.param tau_m=10.0

will generate a new parameter file identical to default.param but with tau_m
equal to 10.0, and then will pass this new parameter file to your script. This
can be very convenient when you wish to study the effects of changing one or two
parameters, without having to edit your parameter file each time.

One of the main aims of Sumatra is to ensure the reproducibility of simulation
results. The repeat command re-runs a previous simulation, and checks that the
output is identical to that of the original run:

$ smt repeat haggling
The new record exactly matches the original.

Although it is better not to delete simulation records (so as to preserve a full
record of the project, false starts and all), it is possible:

$ smt delete 20140418-154800

It is also possible to delete all simulations with a given tag:

$ smt delete --tag foobar

Most of the commands described here have further options that we have not
described. A full description of the options for each command is given in the
command reference. The full list of commands is
available by running smt by itself:

$ smt
Usage: smt <subcommand> [options] [args]

Simulation/analysis management tool version 0.7.4

Available subcommands:
 init
 configure
 info
 run
 list
 delete
 comment
 tag
 repeat
 diff
 help
 export
 upgrade
 sync
 migrate

and help on a given command is available by running the command with the --help
option, e.g.:

$ smt comment --help
usage: smt comment [options] [LABEL] COMMENT

This command is used to describe the outcome of the simulation/analysis. If
LABEL is omitted, the comment will be added to the most recent experiment. If
the '-f/--file' option is set, COMMENT should be the name of a file containing
the comment, otherwise it should be a string of text. By default, comments
will be appended to any existing comments. To overwrite existing comments, use
the '-r/--replace flag.

positional arguments:
 LABEL the record to which the comment will be added
 comment a string of text, or the name of a file containing the
 comment.

optional arguments:
 -h, --help show this help message and exit
 -r, --replace if this flag is set, any existing comment will be
 overwritten, otherwise, the new comment will be appended to
 the end, starting on a new line
 -f, --file interpret COMMENT as the path to a file containing the
 comment

or smt help CMD, where CMD is the name of the command.

This tutorial has covered using smt for serial simulations/analyses. A further tutorial
covers using smt for parallel computations (using MPI [http://en.wikipedia.org/wiki/Message_Passing_Interface]).

Also see smtweb, which provides a more graphical interface to viewing lists
of records than smt list.

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

Managing a research project with Sumatra

Before reading this, we recommend reading Getting started for a quick introduction to Sumatra.
This document expands on the information presented there, giving a fuller picture of the available options.

Setting up your project

To create a Sumatra project, run:

$ smt init ProjectName

in your working directory. smt init has many options (see smt command reference for a full list),
but in general, smt configure has the same options, so any of the options can be changed later.
To see the current configuration of your project, run smt info.

Telling Sumatra about your code

Sumatra expects to find a version control repository in your working directory or one of its parent directories.
If you haven’t yet cloned your repository, Sumatra will do it for you if you give the --repository argument:

$ smt init --repository=https://github.com/someuser/MyCode

If you usually run the same main program, you can store this as a default using the --executable option:

$ smt init --executable=python

Here you can give a full path, or just the name; in the latter case Sumatra will use the PATH environment
variable to search for an executable with that name, and use the first one it finds.

For interpreted languages, it is also possible to set a default script file using the --main option:

$ smt init --main=myscript.py

In this case you must give the full path, either relative to the working directory or an absolute path.

Any time you run some code with Sumatra, it checks whether the code has changed (using your version control system).
If it has, then by default Sumatra will refuse to run until you have committed your changes.
This is so that the exact version of the code you run is always recorded. As an alternative, Sumatra can
store the difference between the code in version control and the code you run. To enable this option, run:

$ smt init --on-changed=store-diff

You can always change back to the “strict” setting with:

$ smt configure --on-changed=error

Handling input and output data

Sumatra tracks both input and output data files. For output data files it is important to tell Sumatra in which
directory the files will be created, to avoid it having to search the entire disk:

$ smt init --datapath=results

Now Sumatra will recursively search results and all sub-directories for any new files created during the
computation. If your computations overlap in time there is a risk that Sumatra will mix up the files. A solution
to this problem is given in the Frequently asked questions. If you don’t specific the output data directory, Sumatra will assume it
is a directory called “Data”.

The default directory for input data files is the filesystem root; this can also be changed with the --input
option. Note that input data files are only tracked if they are passed to your program as command-line arguments.
This limitation will be removed in future.

For more on data handling, see Input and output data.

Storing Sumatra records

Sumatra supports multiple back-end databases for storing records. More information about how to choose a storage
back-end is given in Record stores.

Running your code

To track a computation with Sumatra, you can either use the smt tool or write your own Python scripts
using the Sumatra API (see Using the Sumatra API within your own scripts).

A typical way to run a computation with smt is:

$ smt run --executable=matlab --main=myscript.m input_file1 input_file2

or:

$ smt run -e matlab -m myscript.m input_file1 input_file2

using the short versions of the arguments. Note that input_file1 and input_file2 may be parameter/configuration
files or data files. If the former, they will be treated specially, see Parameter files.

Note that if you are not using an interpreted language, only the –executable argument is needed. If you have
set default values for the executable and/or main script in the program configuration, the smt run command
can be simplified, e.g.:

$ smt configure -e matlab -m myscript.m
$ smt run input_file1 input_file2

Running different versions

If you want to run a previous version of your code, rather than the currently checked-out version, use the
--version option:

$ smt run --version=3e6f02a

Note that this will not overwrite any uncommitted changes; rather Sumatra will refuse to run until you have
committed, stashed, reverted, etc. your changes. Sumatra will also not return to the most recent version after the run:
future runs with no version specified will continue to use the older version.

Labels

To identify your computation, a unique label is required. Sumatra can generate this for you automatically, or this
can be specified using the --label option:

$ smt run --label=test0237

Two formats are available for automatically-generated labels, timestamp-based (the default), and uuid-based.

$ smt configure –labelgenerator=uuid
$ smt configure –labelgenerator=timestamp –timestamp_format=%Y%m%d-%H%M%S

Command-line options

If your own program has its own command-line options of the form --option=value, smt run will
try to interpret these as Sumatra command-line parameters (options of the form --option value, without the equals
sign, are fine). To avoid this, use the --plain configuration option:

$ smt configure --plain

(--no-plain turns this off).

Reading from stdin, writing to stdout

If your program reads from stdin and/or writes to stdout, i.e. you would normally run it using:

$ myprog < input.txt > output.txt

then you can tell Sumatra to run it the same way, but in addition to track the input/output file, using:

$ smt run -e myprog -i input.txt -o output.txt

Commenting

Sumatra offers two ways to attach comments to your computations. When you launch a computation, you
can give the reason for running it, e.g. what hypothesis you are testing:

$ smt run --reason="Test the effect of using a low-pass filter"

Once the computation is finished, you can comment on the outcome:

$ smt comment "Doesn't seem to make much of a difference"

By default, the comment is attached to the most recent computation. You can also comment on an older record,
by giving its label:

$ smt comment 20150423-235351 "Didn't work due to a bug"

You can comment multiple times on the same record. By default, the new comment will be appended to the old one.
To overwrite the old comment, use the “–replace” flag. If you would like to attach a longer comment than will fit on
one line, or a more structured comment, you can write your comment in a temporary text file and then attach that to
the record:

$ smt comment --file comment.txt

Both the “reason” and “outcome” fields can be edited in the web browser interface. To add headings, sub-headings,
hyperlinks, emphasis, etc. in a comment, you can use reStructuredText [http://docutils.sourceforge.net/rst.html] markup, which will be rendered as HTML.

Tagging

To structure your project, and make it easier to find the most interesting results, you can add tags to your
records, either through the web browser interface or on the command line, e.g.:

$ smt tag "Figure 5" 20141203-093401

If you omit the record label, the most recent computation will be tagged.

Tags may contain spaces, but in this case must be contained in quotes. You can tag multiple records at the same time:

$ smt tag modelA 20141203-093401 20141203-122344 20150109-194344

You can also remove tags:

$ smt tag --remove modelA 20141203-122344

Viewing and searching results

The easiest way to review your project is to use the web browser interface - see Using the web interface for more
information on this. It is also possible, however, to view computation records on the command line, or to
export the information to other formats such as HTML and LaTeX.

$ smt list

lists the labels of all records. When you have a lot of records, it will probably be more useful to filter by tags:

$ smt list tag1 tag2 tag3

will only show records that have been tagged with all the tags in the list. To show fuller information about
each record, use the “–long/-l” option:

$ smt list -l

The order of records can be reversed using the “–reverse/-r” flag.

By default, the output is formatted for the console. Several other output formats are also available, for example
LaTeX:

$ smt list --long --format=latex > myproject.tex
$ pdflatex myproject

You can customize the LaTeX output by copying the default template from sumatra/formatting/latex_template.tex
to the .smt subdirectory of your project, and then modifying it. The template uses the Jinja2 [http://jinja.pocoo.org] templating
language.

Comparing records

The web browser interface allows side-by-side comparison of pairs of records. A more limited comparison is
available on the command-line with smt diff.

Deleting records

If your last computation failed because of a silly bug:

$ smt delete

will remove it. Older records can be deleted by giving a list of labels:

$ smt delete 20141203-093401 20141203-122344

or a list of tags:

$ smt delete --tag tag1

If you want to also delete the data files generated by the computations, add the “–data” flag.
Records can also be deleted through the web browser interface.

Relocating a project

If you need to move a Sumatra project to a new directory or a new computer, first copy all the files, ensuring that
the .smt directory and its contents are also copied. We strongly suggest you also take a backup, and check
carefully that everything is working correctly in the new location before deleting the original.

You will next need to update the project configuration to reflect the new location. Supposed you created your project
with the default settings, so that your record store is in .smt/records and your output data is stored under
the Data subdirectory, run the following in the new location:

$ smt configure --store .smt/records --repository . --datapath Data

Alternatively, you can manually edit .smt/project.

If you have also moved the data associated with your project, you will need to update the paths stored in the
record store:

$ smt migrate --datapath Data

If you are using the archive or mirror options for your data (see Input and output data) you may also need to migrate
those paths/URLs.

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

Using the web interface

The web interface is built using the Django [https://www.djangoproject.com/] web framework, and requires that
Django be installed (see Installation).

Starting the web interface

Before using the web interface, you must have created a Sumatra project using
smt init.

To launch the web interface, in your project directory run:

$ smtweb &

This will launch a simple web server that listens on port 8000, and will
automatically open a new tab in your browser at http://127.0.0.1:8000/. You can
specify the -n option which will disable automatic opening of the new tab:

$ smtweb -n

If port 8000 is already in use, you can specify a different port with the -p
option to smtweb, e.g.:

$ smtweb -p 8001

If you are using a single record store for multiple projects, you can run
smtweb from anywhere and specify the location of the record store
on the command line, e.g.:

$ smtweb ~/sumatra.db

List of projects

When you first start smtweb, the first page you see is a list of
your projects.

[image: _images/project_list.png]

Click on the project name to see the records of your simulations/analyses in
that project.

List of records

By default, your project is viewed from a process-centric point of view, i.e. one record for each computation performed.
The list of records page contains a table with one row per computation, with the following columns:

	label

	date/time

	reason

	outcome

	input data

	output data

	duration

	number of processes

	executable name and version

	main file

	code version

	command line arguments

	tags

You can change which columns to display by clicking on the settings icon.

[image: _images/settings_dialog.png]

Selecting records

Each record is represented as one row in the table. The rows can be selected
and unselected by clicking on them. Actions that can be performed on selected rows are:

	delete records

	compare records

[image: _images/selecting_rows.png]

Deleting records

When deleting records, you have the option of also deleting any data generated by
that simulation or analysis.

[image: _images/delete_records.png]

Comparing records

Any pair of records can be compared.

[image: _images/compare_records1.png]

Filtering the records

You can filter the records by clicking on the ‘tag’ icon or by using
the search field.

Accessing record details

You can access the record detail by clicking the corresponding label name in the
main table. The record detail page contains the following sections:

	general info

	parameters

	input data

	output data

	dependencies

	platform information

	stdout & stderr

[image: _images/detail_view1.png]

[image: _images/detail_view2.png]

Data view

To view the history of your project from a data-centric point of view, click on the “Data View” tab.

[image: _images/data_view.png]

You can also see details about individual data items, including a preview of the file contents for file formats which
Sumatra understands (e.g. images, CSV data).

[image: _images/data_detail.png]

Finishing up

Don’t forget to kill the webserver process (e.g. with fg, Ctrl-C) when you are
finished with it.

Customizing the web interface

You can customize the web interface on a per-project basis by placing your own
Django templates [https://docs.djangoproject.com/en/1.8/topics/templates/] in a “templates” subdirectory of the Sumatra ”.smt” directory.
The best way to proceed
is to copy the default templates from “/path/to/sumatra/web/templates”
to “/path/to/myproject/.smt/templates” and then modify them.

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

Parameter files

There is no requirement to put parameters in a separate file to use Sumatra,
nor is it required to use a particular parameter file format. However, if you
do use one of the formats Sumatra supports then you will gain extra
functionality: currently, the ability to modify/add parameters on the command
line and to have Sumatra automatically add the record label to the parameter
file; in future versions, the ability to search and filter your records based
on parameters.

If the name of your parameter file ends in a recognized extension, such as
”.json” or ”.yaml”, Sumatra will use the associated format, otherwise it
chooses the appropriate format based on file contents.

Supported formats

Simple

Each parameter on a separate line, in “name = value” format. Values may be
numbers, strings or lists (denoted with square brackets, comma-separated).
Comments are indicated by a leading “#”. Example:

Example parameter file
nx = 10 # } grid
ny = 12 # } size
inputs = [1e-3, 2e-3, 5e-3, 1e-2]
label = "default"

Config/ini-style

Traditional config file format, as parsed by the standard Python ConfigParser [https://docs.python.org/2/library/configparser.html]
module. Note that this format does not distinguish numbers from string
representations of those numbers, so all parameter values are treated as
strings. This format allows one level of nesting: you can create sections within
which you can define parameters. Comments are indicated by a leading “#”.
Example:

[sectionA]
 a: 2
 b: 3

[sectionB]
 c: hello
 d: world

See the ConfigParser [https://docs.python.org/2/library/configparser.html] docs for more details.

JSON

See http://www.json.org/.

YAML

See http://www.yaml.org

Hierarchical parameter set format

The parameters [https://parameters.readthedocs.org/en/latest/] package (formerly part of NeuroTools) provides a format based
on JSON, but with the addition of a url() function which allows
sub-parameter sets to be included from other files. Example:

{
 "network": {
 "excitatory_cells": url("https://neuralensemble.org/svn/NeuroTools/trunk/doc/example.param")
 "inhibitory_cells": {
 "tau_m": 15.0,
 "cm": 0.75,
 },
 },
 "sim": {
 "tstop": 1000.0,
 "dt": 0.11,
 }
}

Adding new formats

If your parameter file format is not supported by Sumatra, there is no problem:
Sumatra will treat your parameter file as any other input data file and pass it
directly through to your simulation/analysis script.

However, it is fairly straightforward to add support for a new format. You will
need to write a Python class according to the following skeleton:

class MyParameterSet(object):

 def __init__(self, initialiser):
 # initialiser could be either a filesystem path or a string containing
 # the contents of your parameter file, and should raise a SyntaxError
 # if it cannot make sense of the contents.

 def __getitem__(self, name):
 # return the parameter or sub-parameter set with the given name

 def __eq__(self, other):
 # must be implemented

 def __ne__(self, other):
 # must be implemented

 def as_dict(self):
 # return the parameter set as a Python dict containing only numerical
 # types, lists, or other dicts.

 def save(self, filename):
 # self-explanatory

 def pop(self, k, d=None):
 # same behaviour as Python dict

 def update(self, E, **F):
 # same behaviour as Python dict

 def pretty(self, expand_urls=False):
 # Return a string representation of the parameter set, suitable for
 # creating a new, identical parameter set.
 # expand_urls is present for compatibility with NTParameterSet, and need
 # not be used.

For this version of Sumatra, you will have to include this class within the
file parameters.py of your Sumatra installation, or send it to the
developers to include in the Sumatra repository (see Developers’ guide),
as well as editing the build_parameters() function within parameters.py
so that it tries to use your class. In the next version of Sumatra, we plan to
include a plugin system which will greatly simplify adding your own
customizations.

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

Input and output data

If your simulation, data analysis or other computation consumes and/or produces data, Sumatra will try to track them
for you.

Sumatra does not, by default, make copies of your files, although this is an option. Rather, it stores the location of
the data (e.g. the filesystem path) and, importantly, the SHA-1 hash of the file contents. This hash can later be used
to check that the datafiles have not been corrupted or over-written.

Note

in its underlying design, Sumatra is agnostic as to how and where data files are stored. At the moment,
however, Sumatra assumes that data are stored in files (rather than in a relational database, for example),
that input files are available on your local file system, and that output files will be written to the local
file system. If this does not fit with your current workflow, please contact the developers.

Telling Sumatra about your input data files

Sumatra currently handles two cases:

	your script or executable reads data from standard input (stdin);

	the names of the input data files are given in the command-line invocation of your program.

If your workflow is different, e.g. if the filenames are hard-coded or provided in a parameter/configuration file,
Sumatra will not at present track the files: please contact the developers if you need this functionality.

Reading data from stdin

If your usual invocation is something like:

$ myprog < mydata.dat

Then to run and track this with Sumatra, use:

$ smt run -e myprog -i mydata.dat

Reading data from files

If you normally launch computations with something like:

$ python main.py config_file data_file1 data_file2

Then with Sumatra, run:

$ smt configure -e python -m main.py
$ smt run config_file data_file1 data_file2

If your parameter/configuration file is in a format Sumatra recognizes, it will be treated specially (see Parameter files).
Otherwise, it will be treated in the same way as the data files.

Specifying relative paths

By default, Sumatra will store the full path of input data files. If you would prefer to store the path relative to
your working directory or some other directory (this is useful if running computations for the same project on multiple
computers, or if you need to relocate your project directory), you can specify this as follows:

$ smt configure --input . # relative to working directory

Telling Sumatra where to find your output data files

Sumatra will try to automatically detect any new data files created by your simulation or analysis script. To avoid the
overhead of having to monitor the entire file system, you need to give Sumatra the path of a directory to monitor. By
default, Sumatra will look in a subdirectory “Data” of the working directory, but this is rarely a very useful default,
so you will usually want to configure it yourself:

$ smt configure --datapath /path/to/data

Keeping a copy of output data

In general, it is up to you and your scripts/programs to manage your output data files, for example including the
date and time in each output filename to ensure it is unique and doesn’t get over-written, making backups, etc.

However, Sumatra does have an option to automatically make an archive copy of your output data, relieving you of the
need to do so. To activate this, you need to choose a base directory in which to store your archives, e.g.:

$ smt configure --archive ./archive

For each computation, Sumatra will then create a compressed tar archive of all your output data files, label it with
the date and time, and store it in the archive directory. This is particularly useful if your program always uses the
same output filename (such as “output.dat”) as it avoids accidental over-writing.

Dropbox, and other data-mirrors

If you are collaborating with others, or if you wish to disseminate your results publicly (for example, in conjunction
with the Sumatra Server [https://bitbucket.org/apdavison/sumatra_server/wiki/Home] remote record store) then you need to put your results online where they are accessible,
and still let Sumatra know where to find them.

Sumatra does not take care of putting your data online, this is up to you, but if there is a simple mapping between the
local filesystem path and the online URL (e.g. using Dropbox with a public folder), you can tell Sumatra about it using
the mirror option, e.g.:

$ smt configure --mirror https://dl.dropboxusercontent.com/u/xyzxyz/

You will have to figure out what “xyzxyz” should be for your own public folder.

Running multiple computations at the same time

Sumatra infers which files have been created by your computation by taking a snapshot of the designated output directory
immediately before launching your computation and then determining what has changed once the computation is finished.
This means that if you have multiple processes writing to the same directory, Sumatra will get confused about which files
were created by which process.

A workaround is to ensure that each computation writes to a different directory, and then use smt configure --datapath
immediately before each run to tell Sumatra which directory to look in.

A more streamlined version of this workflow is to use the --addlabel option to have Sumatra automatically add
the label/id of the computation to either the command line or the parameter file. It is then up to your script or
program to read this label and use it as the subdirectory within which to write data. Sumatra will then look only in
that directory for output data. This is simpler than it sounds. Suppose I have a Python script “myscript.py” which reads
a data file, does some calculations and then writes data to a file “mydata/output.csv”:

filename = os.path.join("mydata", "output.csv")
with open(filename, "wb") as fp:
 fp.write(data)

Sumatra is configured as follows:

$ smt configure --datapath=mydata --addlabel=cmdline --executable=python --main=myscript.py

The script should be modified as follows:

label = sys.argv[-1] # Sumatra appends the label to the command line
subdir = os.path.join("mydata", label)
os.mkdir(subdir)
filename = os.path.join(subdir, "output.csv")
with open(filename, "wb") as fp:
 fp.write(data)

Now we can run the script many times in parallel, e.g.:

$ for input_file in *.dat; do smt run $input_file & done

Each run will be given a separate, unique label by Sumatra (by default, based on the current date and time);
the Python script reads this label from the command line and uses it to create a unique subdirectory into which it saves the output data;
Sumatra knows to look only in this directory for files associated with the given run, so there is no chance of mixing up
data from different runs.

Writing data to stdout

If you program writes data to standard output, i.e. you would normally run it using:

$ myprog > output.txt

Then you can tell Sumatra to run it the same way, but in addition to track the output file, using:

$ smt run -o output.txt

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

Parallel computations

As well as launching computations on your local machine, Sumatra can launch
distributed, MPI-based computations on a cluster, at least for simple use-cases.
We assume you already have your hosts files, etc. set up. Then, to run your
computation on 17 nodes, run:

$ smt run -n 17 default.param

(assuming you have already configured your default executable and main script
file). This will call mpiexec for you with the appropriate arguments.

If this is insufficiently configurable for you, please take a look at the
DistributedLaunchMode class in launch.py within the source
distribution, and get in touch with the Sumatra developers, for example by
creating a ticket [https://github.com/open-research/sumatra/issues/new] or asking a question on the mailing list [https://groups.google.com/forum/#!forum/sumatra-users].

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

Reproducible publications: including and linking to provenance information in documents

Sumatra provides tools to include figures and other results generated by
Sumatra-tracked computations in documents, with links to full provenance
information: i.e. the full details of the code, input data and computational
environment used to generate the figure/result.

LaTeX

To include figures from a Sumatra project in a LaTeX document, copy the
file sumatra.sty from the sumatra/publishing/latex directory in the
Sumatra source distribution into your working directory, then add

\usepackage{sumatra}

in the preamble of your LaTeX document. If your LaTeX working directory is not
the same as your Sumatra project directory, you can specify the location of
the record store and the project name as package options:

\usepackage[recordstore=/path/to/db, project=MyProject]{sumatra}

You can then use the \smtincludegraphics command in place of the usual
\includegraphics:

\smtincludegraphics{20120907-153528:my_figure.png}

Here the argument is the label of a Sumatra record. This command will look up
the record in your Sumatra project, find the location of the image file (whether
a local file path or a URL) and include the figure in the document. If you are
using the HttpRecordStore, the figure will also be a hyperlink to the
corresponding Sumatra record, so you can easily check the full provenance of the
figure.

If my_figure.png is the only image file produced by that Sumatra run,
then you can use just:

\smtincludegraphics{20120907-153528}

without the path part.

You can also use just a fragment of the image file name as a query term,
replacing the ”:” separator with ”?”:

\smtincludegraphics{20120907-153528?my_fig}

All the usual \includegraphics options are supported, e.g.:

\smtincludegraphics[width=\textwidth]{20120907-153528:my_figure.png}

You can also include as an option the SHA1 hash of the image file contents, as
captured by Sumatra, to ensure that the image you include is the correct one,
and that it hasn’t been accidentally overwritten or replaced by another:

\smtincludegraphics[width=\textwidth, digest=e2d1054c2893f19f50c43ddd5a344b59383df648]{20120907-153528:my_figure.png}

Note

you will have to run latex/pdflatex with the -shell-escape option.

Sphinx

To include figures from a Sumatra project, or links to Sumatra records of
simulations or analyses, in a Sphinx [http://sphinx-doc.org] document, you should first add
'sumatra.publishing.sphinxext' to the extensions list in your
conf.py and then set the following options:

sumatra_record_store = "/path/to/record/store"
sumatra_project = "MyProject"
sumatra_link_icon = "icon_info.png"

The sumatra.publishing.sphinxext extension provides a reStructuredText directive
smtimage and a reStructuredText role smtlink

The smtimage directive

smtimage includes an image file retrieved from a Sumatra project in your document.
If you are using the HttpRecordStore, the image will also be a hyperlink to the
corresponding Sumatra record.

.. smtimage:: 20120907-153528:my_figure.png

All the usual options to the normal image directive can be used (‘width’, ‘height, ‘align’, etc.),
as well as the Sumatra-specific options “digest” (which is used to check the
identity of the included image, as detailed in the section on LaTeX above) “record_store” and “project”,
which can be used to over-ride the global options specified in conf.py, and
so mix results from multiple projects in a single document. Here is a rather complete example.

.. smtimage:: 20120907-153528?my_fig
 :record_store: http://sumatra.example.com/
 :project: MyOtherProject
 :digest: e2d1054c2893f19f50c43ddd5a344b59383df648
 :width: 800 px
 :align: center
 :class: some-css-class

The smtlink role

If using a HttpRecordStore, the smtlink role inserts an
icon in the document, which is a hyperlink to a given record in the store.

To use this, you must set the sumatra_link_icon option, as discussed above.

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

Exporting and reporting

The smt list command has various output formats: text (the default), HTML, LaTeX, and shell. The latter
produces a shell script that could be run to repeat all the computations recorded in your Sumatra project.

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

Using the Sumatra API within your own scripts

Using the smt run command is quick and convenient, but it does require you to
change the way you launch your simulations/analyses.

One way to avoid this, if you use Python, is to use the sumatra package within your own
scripts to perform the record-keeping tasks performed by smt run.

You may also wish to write your own custom script for creating a Sumatra project,
instead of using smt init, but we do not cover this scenario here.

We will start with a simple example script, a dummy simulation, that reads a
parameter file, generates some random numbers, and writes some data to file:

import numpy
import sys

def main(parameters):
 numpy.random.seed(parameters["seed"])
 distr = getattr(numpy.random, parameters["distr"])
 data = distr(size=parameters["n"])
 output_file = "example.dat"
 numpy.savetxt(output_file, data)

parameter_file = sys.argv[1]
parameters = {}
execfile(parameter_file, parameters) # this way of reading parameters
 # is not necessarily recommended
main(parameters)

Let’s suppose this script is in a file named myscript.py, and that we have a
parameter file named defaults.param, which contains:

seed = 65784
distr = "uniform"
n = 100

Without Sumatra, we would normally run this script using something like:

$ python myscript.py defaults.param

To run the script using the smt command line tool, we would use:

$ smt run --reason="reason for running this simulation" defaults.param

(This assumes we have previously used smt init or smt configure to specify that
our executable is python and our main file is myscript.py.)

To benefit from the functionality of Sumatra without having to use smt run, we
have to integrate the steps performed by smt run into our script.

First, we have to load the Sumatra project:

from sumatra.projects import load_project
project = load_project()

We’re going to want to record the simulation duration, so we import the standard
Python time module and record the start time:

import time
start_time = time.time()

We need to slightly modify the procedure for reading parameters. Sumatra stores
the parameters for later use in searching and comparison, so they need to be
transformed into a form Sumatra can use. This is very simple, we just replace
the execfile() call with a build_parameters() call:

from sumatra.parameters import build_parameters
parameters = build_parameters(parameter_file)

Now we create a new Record object, telling it that the script is the
current file; this automatically registers information about the simulation environment:

record = project.new_record(parameters=parameters,
 main_file=__file__,
 reason="reason for running this simulation")

Now comes the main body of the simulation, which is unchanged except that we
take the opportunity to give the output data file a more informative name by
adding the record label to the parameter file:

output_file = "%s.dat" % parameters["sumatra_label"]

At the end of the simulation, we
calculate the simulation duration and search for newly created files:

record.duration = time.time() - start_time
record.output_data = record.datastore.find_new_data(record.timestamp)

Now we add this simulation record to the project, and save the project:

project.add_record(record)
project.save()

Putting this all together:

import numpy
import sys
import time
from sumatra.projects import load_project
from sumatra.parameters import build_parameters

def main(parameters):
 numpy.random.seed(parameters["seed"])
 distr = getattr(numpy.random, parameters["distr"])
 data = distr(size=parameters["n"])
 output_file = "%s.dat" % parameters["sumatra_label"]
 numpy.savetxt(output_file, data)

parameter_file = sys.argv[1]
parameters = build_parameters(parameter_file)

project = load_project()
record = project.new_record(parameters=parameters,
 main_file=__file__,
 reason="reason for running this simulation")
parameters.update({"sumatra_label": record.label})
start_time = time.time()

main(parameters)

record.duration = time.time() - start_time
record.output_data = record.datastore.find_new_data(record.timestamp)
project.add_record(record)

project.save()

Now you can run the simulation in the original way:

python myscript.py defaults.param

and still have the simulation recorded in your Sumatra project. For such a
simple script and simple run environment there is no advantage to doing it this
way: smt run is much simpler. However, if you already have a fairly complex run
environment, this provides a straightforward way to integrate Sumatra’s
functionality into your existing system.

You will have noticed that much of the Sumatra code you have to add is
effectively boilerplate, which will be the same for all your scripts. To save time,
and typing therefore, Sumatra provides a @capture decorator for your
main() function:

import numpy
import sys
from sumatra.parameters import build_parameters
from sumatra.decorators import capture

@capture
def main(parameters):
 numpy.random.seed(parameters["seed"])
 distr = getattr(numpy.random, parameters["distr"])
 data = distr(size=parameters["n"])
 numpy.savetxt("%s.dat" % parameters["sumatra_label"], data)

parameter_file = sys.argv[1]
parameters = build_parameters(parameter_file)
main(parameters)

This is now hardly any longer than the original script.

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

Record stores

Sumatra supports multiple back-end databases for storing records. Sumatra uses
the name “record store” for these databases, to distinguish them from other
databases you may be using. Which one you should choose depends on your needs.

Single user, one record store per project

This is the default setting. If you create a new Sumatra project without specifying the --store option, a
file .smt/records is created, which contains an SQLite [http://www.sqlite.org] database (if you have installed Django [https://www.djangoproject.com/]) or a shelve [https://docs.python.org/2/library/shelve.html]
database (but in this case, you will not be able to use the web browser interface).

Single user, all projects in a single record store

If you have multiple projects, and you wish to store all the records in a single database, you can specify where
this should be located, e.g.:

$ smt init --store=~/sumatra.db MyProject

If the database file does not already exist, it will be created.

For better performance (e.g., if you are running many Sumatra jobs at the same time) you can use PostgreSQL instead
of SQLite. For this, you will need to install the psycopg2 [https://pypi.python.org/pypi/psycopg2/] package, then specify the database connection parameters in
the form:

$ smt init --store=postgres://username:password@hostname/databasename MyProject

Collaborating within a single lab

If two or more people within your lab are using Sumatra, you can all use the same Sumatra record store. For this,
the easiest option is to use a shared file system (e.g., using SAMBA or NFS) or run your PostgreSQL database on its
own server. If this is not possible, you should use the network record store described in the next section.

Collaborating with people in a different lab

To collaborate with people in a different lab you can set up a server running Sumatra Server [https://bitbucket.org/apdavison/sumatra_server/wiki/Home] (distributed
separately from Sumatra) or any other server software implementing the same API. You then set up your project as
follows:

$ smt init --store=https://username:password@hostname/

Now when you run computations, Sumatra will send the records to the server, from where your collaborators can access
them if they have an account on the server, or the project is set to public. Note that this does not transfer data files
to the server, this has to be taken care of separately, using a mirroring data store.

Note

at present, if the network connection fails the simulation record will be lost, so if you have a poor
network connection or very long-running computations, it is probably safer to use a local record store. In the
future we plan to add a caching mechanism which will keep a local copy of the record and retry the connection
to the server later.

The easiest way to try Sumatra Server out is to use Docker.

Open science

If you want to try open notebook science [http://en.wikipedia.org/wiki/Open_notebook_science] you should use the network record store as described in the previous
section, and set your projects to public.

Changing record stores

The smt configure command also accepts the --store option. In this case, Sumatra will copy all the
records from the old store to the new one. It will not delete the old one.

Warning

this feature is quite new, so we recommend making a backup of your Sumatra project before attempting to
change record stores.

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

Upgrading your projects

Since new versions of Sumatra extend its capabilities, and may change the way
records are stored, when you install a new version of Sumatra you will need to
upgrade your existing Sumatra projects to work with the new version.

In the future, this will probably be done automatically, but while Sumatra is still
rapidly evolving we are keeping it as a simple manual process to minimize the
risk of data loss.

If you accidentally upgraded your Sumatra version without exporting the old project
first, you will need to roll back to the previous version in order to be able to do
the export. See below for an example how to do this using pip.

Export using the old version

Before installing the new version of Sumatra, you must export your project to a
file.

For Sumatra 0.1-0.3

First, download export.py [https://raw.githubusercontent.com/open-research/sumatra/master/tools/export.py] to your project directory, then run:

$ python export.py

This will export your project in JSON format to two files in the .smt directory:
records_export.json and project_export.json.

You can now delete export.py

For Sumatra 0.4 and later

Run:

$ smt export

This will export your project in JSON format to two files in the .smt directory:
records_export.json and project_export.json.

Install the new version and upgrade

Now you can install the new version, e.g. with:

$ pip install --upgrade sumatra

(or you can install from source, as explained in doc:installation).

Then run:

$ smt upgrade

The original .smt directory will be copied to a time-stamped directory, e.g.
.smt_backup_20140209132422.

Downgrading an accidentally upgraded Sumatra to export the project

Exporting a project will need to be done with the same Sumatra version that the project
was run with last. If you accidentally upgraded your Sumatra version without exporting
the old project first, you will need to roll back to the previously installed version.
You can explicitly specify a version number with pip as follows:

$ pip install sumatra==0.5.3

Replace 0.5.3 with the correct version number for your project. In case you are unsure,
it may help to run the following command in your project directory:

$ cat .smt/project | grep sumatra_version

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

Extending Sumatra with plug-ins

To support the wide diversity of scientific workflows, Sumatra aims to make it
easy (or at least possible) to customize the way it works. The following
components can be customized:

	launching computations (local execution, distributed using MPI, batch jobs using SLURM, ...)

	parameter file formats (JSON, YAML, ...)

	executable programs/programming languages (Python, MATLAB, R, ...)

	data stores (local disk, network storage, WebDAV, Dropbox, ...)

	record stores (SQLite, PostgreSQL, web-based, ...)

	output formats (plain text, HTML, LaTeX, JSON, ...)

	version control systems (Git, Mercurial, Subversion, ...)

Here is an example of wrapping the PHP command-line interface. (In itself, this gives little or
no benefit, as Sumatra can automatically obtain version information from most command-line
tools, but (a) it is a prerequisite if we wish to add dependency tracking, (b) it makes a
nicely simple example of writing a plug-in!)

from sumatra.core import component
from sumatra.programs import Executable

@component
class PHPcli(Executable):
 name = "PHP"
 executable_names = ('php',)
 file_extensions = ('.php',)
 default_executable_name = 'php'
 requires_script = True

To use this plug-in in a Sumatra project, it should be saved in a file (e.g. php.py)
that is on the Python module search path (for example, installed in site-packages or
added to the PYTHONPATH environment variable), and then added to the project using:

$ smt configure --add-plugin=php

You can also manually edit .smt/project and add the module path to the “plugins” list.

To list the installed plug-ins, use smt info.

To remove a plug-in from a project:

$ smt configure --remove-plugin=php

Component interfaces

As shown in the PHP example above, writing a custom component involves writing
a new class which inherits from a Sumatra base class, and then registering the
class with the component registry.

The available base classes are:

	sumatra.datastore.base.DataStore

	sumatra.datastore.base.DataItem

	sumatra.formatting.Formatter

	sumatra.recordstore.base.RecordStore

	sumatra.versioncontrol.base.Repository

	sumatra.versioncontrol.base.WorkingCopy

	sumatra.launch.LaunchMode

	sumatra.parameters.ParameterSet

	sumatra.programs.Executable

For full details of which methods need to be implemented in your sub-class,
see the API reference.

Note

At present, there is no mechanism for plug-ins to change the list of options
for command-line tools such as smt. This is planned for the future.

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

Graphical user interfaces

Sumatra has a command line interface and a web interface, but does not currently
have a graphical desktop client.

We will probably write one at some point, but we hope that other people will
also write their own, building on top of the tools and functionality provided in
the Sumatra package.

The reason we hope for multiple desktop clients is that everyone has their own
preferred workflow, and it seems unlikely that one graphical interface will
work equally well for everyone.

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

smt command reference

comment

usage: smt comment [options] [LABEL] COMMENT

This command is used to describe the outcome of the simulation/analysis. If
LABEL is omitted, the comment will be added to the most recent experiment. If
the '-f/--file' option is set, COMMENT should be the name of a file containing
the comment, otherwise it should be a string of text. By default, comments
will be appended to any existing comments. To overwrite existing comments, use
the '-r/--replace flag.

positional arguments:
 LABEL the record to which the comment will be added
 comment a string of text, or the name of a file containing the
 comment.

optional arguments:
 -h, --help show this help message and exit
 -r, --replace if this flag is set, any existing comment will be
 overwritten, otherwise, the new comment will be appended to
 the end, starting on a new line
 -f, --file interpret COMMENT as the path to a file containing the
 comment

configure

usage: smt configure [options]

Modify the settings for the current project.

optional arguments:
 -h, --help show this help message and exit
 -d PATH, --datapath PATH
 set the path to the directory in which smt will search
 for datafiles generated by the simulation or analysis.
 -i PATH, --input PATH
 set the path to the directory in which smt will search
 for input datafiles.
 -l OPTION, --addlabel OPTION
 If this option is set, smt will append the record
 label either to the command line (option 'cmdline') or
 to the parameter file (option 'parameters'), and will
 add the label to the datapath when searching for
 datafiles. It is up to the user to make use of this
 label inside their program to ensure files are created
 in the appropriate location.
 -e PATH, --executable PATH
 set the path to the executable.
 -r REPOSITORY, --repository REPOSITORY
 the URL of a Subversion or Mercurial repository
 containing the code. This will be checked out/cloned
 into the current directory.
 -m MAIN, --main MAIN the name of the script that would be supplied on the
 command line if running the simulator normally, e.g.
 init.hoc.
 -c {store-diff,error}, --on-changed {store-diff,error}
 may be 'store-diff' or 'error': the action to take if
 the code in the repository or any of the dependencies
 has changed.
 -g OPTION, --labelgenerator OPTION
 specify which method Sumatra should use to generate
 labels (options: timestamp, uuid)
 -t TIMESTAMP_FORMAT, --timestamp_format TIMESTAMP_FORMAT
 the timestamp format given to strftime
 -L {serial,distributed,slurm-mpi}, --launch_mode {serial,distributed,slurm-mpi}
 how computations should be launched.
 -o LAUNCH_MODE_OPTIONS, --launch_mode_options LAUNCH_MODE_OPTIONS
 extra options for the given launch mode, to be given
 in quotes with a leading space, e.g. ' --foo=3'
 -p, --plain pass arguments to the 'run' command straight through
 to the program. Otherwise arguments of the form
 name=value can be used to overwrite default parameter
 values.
 --no-plain arguments to the 'run' command of the form name=value
 will overwrite default parameter values. This is the
 opposite of the --plain option.
 -s STORE, --store STORE
 Change the record store to the specified path, URL or
 URI (must be specified). The argument can take the
 following forms: (1) `/path/to/sqlitedb` -
 DjangoRecordStore is used with the specified Sqlite
 database, (2) `http[s]://location` - remote
 HTTPRecordStore is used with a remote Sumatra server,
 (3)
 `postgres://username:password@hostname/databasename` -
 DjangoRecordStore is used with specified Postgres
 database.
 -W URL, --webdav URL specify a webdav URL (with username@password: if
 needed) as the archiving location for data
 -A PATH, --archive PATH
 specify a directory in which to archive output
 datafiles. If not specified, or if 'false', datafiles
 are not archived.
 -M URL, --mirror URL specify a URL at which your datafiles will be
 mirrored.
 --add-plugin ADD_PLUGIN
 name of a Python module containing one or more plug-
 ins.
 --remove-plugin REMOVE_PLUGIN
 name of a plug-in module to remove from the project.

delete

usage: smt delete [options] LIST

LIST should be a space-separated list of labels for individual records or of
tags. If it contains tags, you must set the --tag/-t option (see below). The
special value "last" allows you to delete the most recent simulation/analysis.
If you want to delete all records, just delete the .smt directory and use smt
init to create a new, empty project.

positional arguments:
 LIST a space-separated list of labels for individual records or of
 tags

optional arguments:
 -h, --help show this help message and exit
 -t, --tag interpret LIST as containing tags. Records with any of these
 tags will be deleted.
 -d, --data also delete any data associated with the record(s).

diff

usage: smt diff [options] LABEL1 LABEL2

Show the differences, if any, between two records.

positional arguments:
 label1
 label2

optional arguments:
 -h, --help show this help message and exit
 -i IGNORE, --ignore IGNORE
 a regular expression pattern for filenames to ignore
 when evaluating differences in output data. To supply
 multiple patterns, use the -i option multiple times.
 -l, --long prints full information for each record

export

usage: smt export

Export a Sumatra project and its records to JSON. This is needed before
running upgrade.

optional arguments:
 -h, --help show this help message and exit

help

usage: smt help CMD

Get help on an smt command.

positional arguments:
 cmd

optional arguments:
 -h, --help show this help message and exit

info

usage: smt info

Print information about the current project.

optional arguments:
 -h, --help show this help message and exit

init

usage: smt init [options] NAME

Create a new project called NAME in the current directory.

positional arguments:
 NAME a short name for the project; should not contain
 spaces.

optional arguments:
 -h, --help show this help message and exit
 -d PATH, --datapath PATH
 set the path to the directory in which smt will search
 for output datafiles generated by the
 simulation/analysis. Defaults to ./Data.
 -i PATH, --input PATH
 set the path to the directory relative to which input
 datafile paths will be given. Defaults to the
 filesystem root.
 -l OPTION, --addlabel OPTION
 If this option is set, smt will append the record
 label either to the command line (option 'cmdline') or
 to the parameter file (option 'parameters'), and will
 add the label to the datapath when searching for
 datafiles. It is up to the user to make use of this
 label inside their program to ensure files are created
 in the appropriate location.
 -e PATH, --executable PATH
 set the path to the executable. If this is not set,
 smt will try to infer the executable from the value of
 the --main option, if supplied, and will try to find
 the executable from the PATH environment variable,
 then by searching various likely locations on the
 filesystem.
 -r REPOSITORY, --repository REPOSITORY
 the URL of a Subversion or Mercurial repository
 containing the code. This will be checked out/cloned
 into the current directory.
 -m MAIN, --main MAIN the name of the script that would be supplied on the
 command line if running the simulation or analysis
 normally, e.g. init.hoc.
 -c ON_CHANGED, --on-changed ON_CHANGED
 the action to take if the code in the repository or
 any of the depdendencies has changed. Defaults to
 error
 -s STORE, --store STORE
 Specify the path, URL or URI to the record store (must
 be specified). This can either be an existing record
 store or one to be created. The argument can take the
 following forms: (1) `/path/to/sqlitedb` -
 DjangoRecordStore is used with the specified Sqlite
 database, (2) `http[s]://location` - remote
 HTTPRecordStore is used with a remote Sumatra server,
 (3)
 `postgres://username:password@hostname/databasename` -
 DjangoRecordStore is used with specified Postgres
 database. Not using the `--store` argument defaults to
 a DjangoRecordStore with Sqlite in `.smt/records`
 -g OPTION, --labelgenerator OPTION
 specify which method Sumatra should use to generate
 labels (options: timestamp, uuid)
 -t TIMESTAMP_FORMAT, --timestamp_format TIMESTAMP_FORMAT
 the timestamp format given to strftime
 -L {serial,distributed,slurm-mpi}, --launch_mode {serial,distributed,slurm-mpi}
 how computations should be launched. Defaults to
 serial
 -o LAUNCH_MODE_OPTIONS, --launch_mode_options LAUNCH_MODE_OPTIONS
 extra options for the given launch mode
 -W URL, --webdav URL specify a webdav URL (with username@password: if
 needed) as the archiving location for data
 -A PATH, --archive PATH
 specify a directory in which to archive output
 datafiles. If not specified, or if 'false', datafiles
 are not archived.
 -M URL, --mirror URL specify a URL at which your datafiles will be
 mirrored.

list

usage: smt list [options] [TAGS]

If TAGS (optional) is specified, then only records tagged with all the tags in
TAGS will be listed.

positional arguments:
 TAGS

optional arguments:
 -h, --help show this help message and exit
 -l, --long prints full information for each record
 -T, --table prints information in tab-separated columns
 -f FMT, --format FMT FMT can be 'text' (default), 'html', 'json', 'latex'
 or 'shell'.
 -r, --reverse list records in reverse order (default: newest first)

migrate

usage: smt migrate [options]

If you have moved your data files to a new location, update the record store
to reflect the new paths.

optional arguments:
 -h, --help show this help message and exit
 -d PATH, --datapath PATH
 modify the path to the directory in which your results
 are stored.
 -i PATH, --input PATH
 modify the path to the directory in which your input
 data files are stored.
 -A PATH, --archive PATH
 modify the directory in which your results are
 archived.
 -M URL, --mirror URL modify the URL at which your data files are mirrored.

repeat

usage: smt repeat LABEL

Re-run a previous simulation/analysis under (in theory) identical conditions,
and check that the results are unchanged.

positional arguments:
 LABEL label of record to be repeated

optional arguments:
 -h, --help show this help message and exit
 -l NEW_LABEL, --label NEW_LABEL
 specify a label for the new experiment. If no label is
 specified, one will be generated automatically.

run

usage: smt run [options] [arg1, ...] [param=value, ...]

The list of arguments will be passed on to the simulation/analysis script. It
should normally contain at least the name of a parameter file, but can also
contain input files, flags, etc. If the parameter file should be in a format
that Sumatra understands (see documentation), then the parameters will be
stored to allow future searching, comparison, etc. of records. For
convenience, it is possible to specify a file with default parameters and then
specify those parameters that are different from the default values on the
command line with any number of param=value pairs (note no space around the
equals sign).

optional arguments:
 -h, --help show this help message and exit
 -v REV, --version REV
 use version REV of the code (if this is not the same
 as the working copy, it will be checked out of the
 repository). If this option is not specified, the most
 recent version in the repository will be used. If
 there are changes in the working copy, the user will
 be prompted to commit them first
 -l LABEL, --label LABEL
 specify a label for the experiment. If no label is
 specified, one will be generated automatically.
 -r REASON, --reason REASON
 explain the reason for running this
 simulation/analysis.
 -e PATH, --executable PATH
 Use this executable for this run. If not specified,
 the project's default executable will be used.
 -m MAIN, --main MAIN the name of the script that would be supplied on the
 command line if running the simulation/analysis
 normally, e.g. init.hoc. If not specified, the
 project's default will be used.
 -n N, --num_processes N
 run a distributed computation on N processes using
 MPI. If this option is not used, or if N=0, a normal,
 serial simulation/analysis is run.
 -t TAG, --tag TAG tag you want to add to the project
 -D, --debug print debugging information.
 -i STDIN, --stdin STDIN
 specify the name of a file that should be connected to
 standard input.
 -o STDOUT, --stdout STDOUT
 specify the name of a file that should be connected to
 standard output.

sync

usage: smt sync PATH1 [PATH2]

Synchronize two record stores. If both PATH1 and PATH2 are given, the record
stores at those locations will be synchronized. If only PATH1 is given, and
the command is run in a directory containing a Sumatra project, only that
project's records be synchronized with the store at PATH1. Note that PATH1 and
PATH2 may be either filesystem paths or URLs.

positional arguments:
 path1
 path2

optional arguments:
 -h, --help show this help message and exit

tag

usage: smt tag [options] TAG [LIST]

If TAG contains spaces, it must be enclosed in quotes. LIST should be a space-
separated list of labels for individual records. If it is omitted, only the
most recent record will be tagged. If the '-r/--remove' option is set, the tag
will be removed from the records.

positional arguments:
 TAG tag to add
 LIST a space-separated list of records to be tagged

optional arguments:
 -h, --help show this help message and exit
 -r, --remove remove the tag from the record(s), rather than adding it.

upgrade

usage: smt upgrade

Upgrade an existing Sumatra project. You must have previously run "smt export"
or the standalone 'export.py' script.

optional arguments:
 -h, --help show this help message and exit

version

usage: smt version

Print the Sumatra version.

optional arguments:
 -h, --help show this help message and exit

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

Developers’ guide

These instructions are for developing on a Unix-like platform, e.g. Linux or
Mac OS X, with the bash shell.

Requirements

	Python [https://www.python.org] 2.6, 2.7 or 3.4

	Django [https://www.djangoproject.com/] >= 1.6

	django-tagging [http://code.google.com/p/django-tagging/] >= 0.3

	parameters >= 0.2.1

	nose [https://nose.readthedocs.org/en/latest/] >= 0.11.4

	future >= 0.14

	if using Python < 3.4, pathlib >= 1.0.0

	if using Python 2.6, ordereddict, unittest2 [https://pypi.python.org/pypi/unittest2] >= 0.5.1

	docutils

	Jinja2

Optional:

	mpi4py [http://mpi4py.scipy.org/] >= 1.2.2

	coverage [http://nedbatchelder.com/code/coverage/] >= 3.3.1 (for measuring test coverage)

	httplib2 (for the remote record store)

	GitPython (for Git support)

	hgapi (for Mercurial support)

	bzr (for Bazaar support)

	PyYAML (for YAML support)

	psycopg2 (for PostgreSQL support)

	dexml and fs (for WebDAV support)

We strongly recommend developing within a virtualenv [http://www.virtualenv.org].

Getting the source code

We use the Git version control system. To get a copy of the code you
should fork the main Sumatra repository on Github [https://github.com/open-research/sumatra], then clone your own fork.:

$ cd /some/directory
$ git clone https://github.com/<username>/sumatra.git

Now you need to make sure that the sumatra package is on your PYTHONPATH and
that the smt and smtweb scripts are on your PATH. You can do this either
by installing Sumatra:

$ cd sumatra
$ python setup.py install

(if you do this, you will have to re-run setup.py install any time you make
changes to the code) or by installing using pip with the “editable” option:

$ pip install --editable sumatra

To ensure you always have access to the most recent version, add the main repository as “upstream”:

$ git remote add upstream https://github.com/open-research/sumatra.git

To update to the latest version from the repository:

$ git pull upstream master

Running the test suite

Before you make any changes, run the test suite to make sure all the tests pass
on your system:

$ cd sumatra/test/unittests
$ nosetests

You will see some error messages, but don’t worry - these are just tests of
Sumatra’s error handling. At the end, if you see “OK”, then all the tests
passed, otherwise it will report how many tests failed or produced errors.

If any of the tests fail, check out the continuous integration server [https://qa.nest-initiative.org/view/Sumatra/job/sumatra/] to see
if these are “known” failures, otherwise please open a bug report [https://github.com/open-research/sumatra/issues/new].

(many thanks to the NEST Initiative [http://www.nest-initiative.org/] for hosting the CI server).

Writing tests

You should try to write automated tests for any new code that you add. If you
have found a bug and want to fix it, first write a test that isolates the bug
(and that therefore fails with the existing codebase). Then apply your fix and
check that the test now passes.

To see how well the tests cover the code base, run:

$ nosetests --coverage --cover-package=sumatra --cover-erase

Committing your changes

Once you are happy with your changes, you can commit them to your local copy of
the repository:

$ git commit -m 'informative commit message'

and then push them to your Github repository:

$ git push

Before pushing, run the test suite again to check that you have not introduced any new bugs.

Once you are ready for your work to be merged into the main Sumatra repository, please open a pull request.
You are encouraged to use a separate branch for each feature or bug-fix, as it makes merging changes easier.

Coding standards and style

All code should conform as much as possible to PEP 8 [https://www.python.org/dev/peps/pep-0008/], and should run with
Python 2.6, 2.7 and 3.4. Lines should be no longer than 99 characters.

Reviewing pull requests

All contributors are encouraged to review pull requests, and all pull requests must have at least one review before
merging.

Things to check for:

	Does the pull request implement a single, well-defined piece of functionality?
(pull requests which perform system-wide refactoring are sometimes necessary, but need much more careful scrutiny)

	Does the code work? Is the logic correct? Does is anticipate possible failure conditions (e.g. lack of internet connection)?

	Is the code easily understood?

	Does the code conform to the coding standards (see above)?

	Does the code implement a general solution, or is the code too specific to a particular (language|version control system|storage backend)?

	Do all public functions/classes have docstrings?

	Are there tests for all new/changed functionality?

	Has the documentation been updated?

	Has the Travis CI build passed?

	Is the syntax compatible with both Python 2 and 3? (even if we don’t yet support Python 3, any new code should try to do so)

	Is there any redundant or duplicate code?

	Is the code as modular as possible?

	Is there any commented out code, or print statements used for debugging?

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

API reference

	Input and output data
	Base classes

	Storing data on the local filesystem

	Automatic archiving of data written to the local filesystem

	Mirroring data to a remote webserver

	Finding dependencies
	Language-independent heuristics and utilities

	Python

	Matlab

	NEURON

	GENESIS

	R

	Storing provenance information
	Base class

	Minimal record store

	Django-based record store

	Client for remote record store

	Module functions

	Transferring provenance information

	Version control
	Repository objects

	Working copy objects

	Functions

	Exceptions

	Formatting output
	Formatting Sumatra records

	Formatting the difference between two records

	Launching programs

	Parameter file formats
	Classes

	Providing information about programs
	Classes

	Functions

	Managing projects

	Handling provenance information

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

 	API reference

Input and output data

The datastore module provides an abstraction layer around data storage,
allowing different methods of storing simulation/analysis results (local
filesystem, remote filesystem, database, etc.) to provide a common interface.

The interface is built around three types of object: a DataStore may
contain many DataItems, each of which is identified by a
DataKey.

There is a single DataKey class. DataStore and
DataItem are abstract base classes, and must be subclassed to provide
different functionality.

Base classes

	
class sumatra.datastore.DataKey(path, digest, creation, **metadata)

	Identifies a DataItem, and may be used to retrieve a
DataItem from a DataStore.

May also be used to store metadata (e.g. file size, mimetype) and be used as
a proxy for the DataItem on a system where the actual data is not
available.

	
path

	a token used to retrieve a DataItem. For filesystem-based
DataStores, this will be a relative path. For database-backed
stores (none of which have been implemented yet :-) it could be a primary
key or an object encapsulating a query.

	
digest

	the SHA1 digest of the contents of the associated DataItem. This
attribute is calculated on creation of the DataKey.

	
metadata

	a dict containing metadata, such as file size and mimetype.

	
next()

	

	
class sumatra.datastore.base.DataItem

	Base class for data item classes, that may represent files or database records.

	
digest

	docstring

	
generate_key()

	Generate a DataKey uniquely identifying this data item.

	
get_content(max_length=None)

	Return the contents of the data item as a string.

If max_length is specified, return that number of bytes, otherwise
return the entire content.

	
next()

	

	
save_copy(path)

	Save a copy of the data to a local file.

If path is an existing directory, the data item path will be appended
to it, otherwise path is treated as a full path including filename,
either absolute or relative to the working directory.

Return the full path of the final file.

	
sorted_content()

	Return the contents of the data item, sorted by line.

	
class sumatra.datastore.base.DataStore

	Base class for data storage abstractions.

	
contains_path(path)

	Does the store contain a data item with the given path?

	
copy()

	

	
delete(*keys)

	Delete the files corresponding to the given keys.

	
find_new_data(timestamp)

	Finds newly created/changed data items

	
generate_keys(*paths)

	Given a number of “paths”, return a list of keys enabling the data at
those paths to be retrieved from this store later.

	
get_content(key, max_length=None)

	Return the contents of a file identified by a key.

If max_length is given, the return value will be truncated.

	
get_data_item(key)

	Return the file that matches the given key.

	
next()

	

	
required_attributes = (u'find_new_data', u'get_data_item', u'delete')

	

Storing data on the local filesystem

	
class sumatra.datastore.FileSystemDataStore(root)

	Bases: sumatra.datastore.base.DataStore

Represents a locally-mounted filesystem. The root of the data store will
generally be a subdirectory of the real filesystem.

	
root

	

The absolute path on the underlying file system to the root directory of the
data store.

	
class sumatra.datastore.filesystem.DataFile(path, store, creation=None)

	Bases: sumatra.datastore.base.DataItem

A file-like object, that represents a file in a local filesystem.

	
path

	path relative to the FileSystemDataStore root

	
full_path

	absolute path relative to the underlying filesystem.

	
size

	file size in bytes

	
name

	file name

	
extension

	file extension

	
mimetype

	if the mimetype cannot be guessed, this will be None

Automatic archiving of data written to the local filesystem

	
class sumatra.datastore.ArchivingFileSystemDataStore(root, archive=u'.smt/archive')

	Bases: sumatra.datastore.filesystem.FileSystemDataStore

Represents a locally-mounted filesystem that archives any new files created
in it. The root of the data store will generally be a subdirectory of the
real filesystem.

	
archive_store

	Directory within which data will be archived.

	
class sumatra.datastore.archivingfs.ArchivedDataFile(path, store, creation=None)

	Bases: sumatra.datastore.base.DataItem

A file-like object, that represents a file inside a tar archive

Mirroring data to a remote webserver

	
class sumatra.datastore.MirroredFileSystemDataStore(root, mirror_base_url)

	Bases: sumatra.datastore.filesystem.FileSystemDataStore

Represents a locally-mounted filesystem whose contents are mirrored on
a webserver, so that the files can be accessed via an HTTP URL.

	
mirror_base_url

	URL to which the file path will be appended to obtain the final URL of a file

	
class sumatra.datastore.mirroredfs.MirroredDataFile(path, store, creation=None)

	Bases: sumatra.datastore.base.DataItem

A file-like object, that represents a file existing both on a local
file system and on a webserver.

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

 	API reference

Finding dependencies

The dependency_finder sub-package attempts to determine all the dependencies of
a given script, including the version of each dependency.

For each executable that is supported there is a sub-module containing a
find_dependencies() function, and a series of heuristics for finding
version information. There is also a sub-module core, which contains
heuristics that are independent of the language, e.g. where the dependencies are
under version control.

	copyright:	Copyright 2006-2015 by the Sumatra team, see doc/authors.txt

	license:	BSD 2-clause, see LICENSE for details.

For users of the API, the principal function of interest is the following.

	
sumatra.dependency_finder.find_dependencies(filename, executable)

	Return a list of dependencies for a given script and programming language.

	filename:

	the path to the script whose dependencies should be found.

	executable:

	an instance of Executable or one of its
subclasses.

This function returns a list of Dependency objects. There is a
different Dependency subclass for each programming language, but all
have the following attributes:

	
class sumatra.dependency_finder.core.BaseDependency(name, path=None, version=u'unknown', diff=u'', source=None)

	Contains information about a program component, and tries to determine version information.

	name:

	an identifying name, e.g. the module name in Python

	path:

	the location of the dependency file in the local filesystem

	version:

	the version of the dependency, if that can be determined, otherwise
‘unknown’. Always a string, even if the version can also be represented
as a number.

	diff:

	if the dependency is under version control and has been modified, the
diff between the actual version and the last-committed version.

	source:

	an identifier for where the dependency came from, if known, e.g. the
url of a version control repository or the name of a Linux package.

If you are interested in improving the dependency finder for an existing
program/language, or in adding a dependency finder for a new program or language,
you may be interested in the following.

Language-independent heuristics and utilities

	
sumatra.dependency_finder.core.find_versions(dependencies, heuristics)

	Try to find version information by calling a series of functions in turn.

	dependencies:

	a list of Dependency objects.

	heuristics:

	a list of functions that accept a component as the single
argument and return a version number or ‘unknown’.

Returns a possibly modified list of dependencies

	
sumatra.dependency_finder.core.find_versions_from_versioncontrol(dependencies)

	Determine whether a file is under version control, and if so,
obtain version information from this.

	
sumatra.dependency_finder.core.find_file(path, current_directory, search_dirs)

	Look for path as an absolute path then relative to the current directory,
then relative to search_dirs.
Return the absolute path.

Python

	
sumatra.dependency_finder.python.find_versions_by_attribute(dependencies, executable)

	Try to find version information from the attributes of a Python module.

	
sumatra.dependency_finder.python.find_versions_from_egg(dependencies)

	Determine whether a Python module is provided as an egg, and if so,
obtain version information from this.

	
sumatra.dependency_finder.python.find_imported_packages(filename, executable_path, debug=0, exclude_stdlib=True)

	Find all imported top-level packages for a given Python file.

We cannot assume that the version of Python being used to run Sumatra is the
same as that used to run the simulation/analysis. Therefore we need to run
all the dependency finding and version checking in a subprocess with the
correct version of Python.

	
sumatra.dependency_finder.python.find_dependencies(filename, executable)

	Return a list of Dependency objects representing all the top-level
modules or packages imported (directly or indirectly) by a given Python file.

Matlab

	
sumatra.dependency_finder.matlab.find_dependencies(filename, executable)

	

	
sumatra.dependency_finder.matlab.save_dependencies(cmd, filename)

	save all dependencies to the file in the current folder

NEURON

	
sumatra.dependency_finder.neuron.find_xopened_files(file_path)

	Find all files that are xopened, whether directly or indirectly, by a given
Hoc file. Note that this only handles cases whether the path is given
directly, not where it has been previously assigned to a strdef.

	
sumatra.dependency_finder.neuron.find_loaded_files(file_path, executable_path)

	Find all files that are loaded with load_file(), whether directly or
indirectly, by a given Hoc file. Note that this only handles cases whether
the path is given directly, not where it has been previously assigned to a
strdef. Also note that this is more complicated than xopen(), since
NEURON also looks in any directories in $HOC_LIBRARY_PATH and
$NEURONHOME/lib/hoc.

	
sumatra.dependency_finder.neuron.find_dependencies(filename, executable)

	Return a list of Dependency objects representing all Hoc files imported
(directly or indirectly) by a given Hoc file.

GENESIS

	
sumatra.dependency_finder.genesis.find_included_files(file_path)

	Find all files that are included, whether directly or indirectly, by a given
.g file.

	
sumatra.dependency_finder.genesis.find_dependencies(filename, executable)

	Return a list of Dependency objects representing all files included,
whether directly or indirectly, by a given .g file.

R

	
sumatra.dependency_finder.r.find_dependencies(filename, executable)

	Return list of dependencies.

First determines dependency info for filename. This is done through an external call
(using the Rscript from exectuable.path) to a custom R script that uses parse
and simple pattern-matching to find all calls in filename that load external
packages (i.e., the R calls “library” and “require”). The result is returned
in a string with package info delimited by pre-set tokens. Info includes:
name, version, local path, and repo source (repo name but no URLs).

Second, parses the dependency info into Dependency objects, returned in a list.

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

 	API reference

Storing provenance information

The recordstore module provides an abstraction layer around storage of
simulation/analysis records, providing a common interface to different storage
methods (simple serialisation, relational database, etc.)

Base class

All record store classes have the following methods. Some stores have
additional methods (see below).

	
class sumatra.recordstore.base.RecordStore

	Base class for record store implementations.

	
delete(project_name, label)

	Delete the record with the given label from the given project.

	
delete_all()

	Delete all records from the store.

	
delete_by_tag(project_name, tag)

	Delete all records from the given project that have been tagged with the given tag.

	
export(project_name, indent=2)

	Returns a string with a JSON representation of the project record store.

	
export_records(records, indent=2)

	Returns a string with a JSON representation of the given records.

	
get(project_name, label)

	Retrieve the record with the given label from the given project.

	
has_project(project_name)

	Does the store contain any records for the given project?

	
import_(project_name, content)

	Import records in JSON format.

	
labels(project_name)

	Return the labels of all records in the given project.

	
list(project_name, tags=None)

	Return a list of records for the given project.

If tags is not provided, list all records, otherwise list only records
that have been tagged with one or more of the tags.

	
list_projects()

	Return the names of all projects that have records in this store.

	
most_recent(project_name)

	Return the most recent record from the given project.

	
required_attributes = (u'list_projects', u'save', u'get', u'list', u'labels', u'delete', u'delete_all', u'delete_by_tag', u'most_recent', u'has_project')

	

	
save(project_name, record)

	Store the given record under the given project.

	
sync(other, project_name)

	Synchronize two record stores so that they contain the same records for
a given project.

Where the two stores have the same label (within a project) for
different records, those records will not be synced. The method
returns a list of non-synchronizable records (empty if the sync worked
perfectly).

	
sync_all(other)

	Synchronize all records from all projects between two record stores.

	
update(project_name, field, value, tags=None)

	Modify the records for a given project.

	Arguments:

	field: the name of a record attribute, e.g. “datastore.root”
value:

Minimal record store

	
class sumatra.recordstore.ShelveRecordStore(shelf_name=u'.smt/records')

	Bases: sumatra.recordstore.base.RecordStore

Handles storage of simulation/analysis records based on the Python standard
shelve module.

The advantage of this record store is that it has no dependencies. The
disadvantages are that it allows only local access and does not support
the smtweb interface.

Django-based record store

	
class sumatra.recordstore.DjangoRecordStore(db_file=u'.smt/records')

	Bases: sumatra.recordstore.base.RecordStore

Handles storage of simulation/analysis records in a relational database, via
the Django object-relational mapper (ORM), which means that any database
supported by Django could in principle be used, although for now we assume
SQLite or PostgreSQL.

This record store is needed for the smtweb interface.

Client for remote record store

	
class sumatra.recordstore.HttpRecordStore(server_url, username=None, password=None, disable_ssl_certificate_validation=True)

	Bases: sumatra.recordstore.base.RecordStore

Handles storage of simulation/analysis records on a remote server using HTTP.

The server should support the following URL structure and HTTP methods:

	/
	GET

	/<project_name>/[?tags=<tag1>,<tag2>,...]
	GET

	/<project_name>/tag/<tag>/
	GET, DELETE

	/<project_name>/<record_label>/
	GET, PUT, DELETE

and should both accept and return JSON-encoded data when the Accept header is
“application/json”.

The required JSON structure can be seen in recordstore.serialization.

	
create_project(project_name, long_name=u'', description=u'')

	Create an empty project in the record store.

	
project_info(project_name)

	Return a project’s long name and description.

	
update_project_info(project_name, long_name=u'', description=u'')

	Update a project’s long name and description.

Module functions

	
sumatra.recordstore.get_record_store(uri)

	Return the RecordStore object found at the given URI (which may be
a URL or filesystem path).

Transferring provenance information

Handles serialization/deserialization of record store contents to/from JSON.

	copyright:	Copyright 2006-2015 by the Sumatra team, see doc/authors.txt

	license:	BSD 2-clause, see LICENSE for details.

	
sumatra.recordstore.serialization.encode_record(record, indent=None)

	

	
sumatra.recordstore.serialization.encode_project_info(long_name, description)

	Encode a Sumatra project as JSON

	
sumatra.recordstore.serialization.build_record(data)

	Create a Sumatra record from a nested dictionary.

	
sumatra.recordstore.serialization.decode_record(content)

	Create a Sumatra record from a JSON string.

	
sumatra.recordstore.serialization.decode_records(content)

	Create multiple Sumatra records from a JSON string.

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

 	API reference

Version control

The versioncontrol sub-package provides an abstraction layer around
different revision/version control systems (VCSs). Only the functionality required for
recording version numbers and switching the working copy between different
versions is wrapped - for more complex tasks such as merging, branching, etc.,
the version control tool should be used directly.

Repository objects

A Repository object represents a version control repository. Its main
roles in Sumatra are

	to contain the information necessary to identify the repository for
reproducibility purposes (i.e. its URL)

	to provide a uniform interface for obtaining a working copy (“checkout”
in Subversion parlance, “clone” for Git/Mercurial)

There are four subclasses of the abstract base Repository class:

	SubversionRepository,

	MercurialRepository,

	GitRepository,

	BazaarRepository.

These subclasses are only available if the appropriate Python bindings for the
underlying VCS are installed - see Installation.
Each of the subclasses implements the following interface:

	
class sumatra.versioncontrol.base.Repository(url, upstream=None)

	Represents, and enables limited interaction with, the version control system
repository located at url.

If upstream is not provided, this information will be obtained, if
possible, from the version control system.

	
url

	The repository URL, generally a local file system path for distributed VCSs.

	
upstream

	For distributed VCSs, the repository from which the local repository was cloned.

	
checkout(path=u'.')

	Clone a repository (“checkout” in Subversion) from self.url to
the local filesystem at path.

	
exists

	Does the repository represented by this object actually exist?

	
get_working_copy(path=None)

	Return a WorkingCopy object corresponding to a checkout of this repository.

	
next()

	

	
required_attributes = (u'exists', u'checkout', u'get_working_copy')

	

	
vcs_type

	

Working copy objects

WorkingCopy objects provide functionality for inspecting the status
of a version control working copy (which files have been modified, what version
is currently checked out) and to change the version in use (to repeat previous
computations, etc.)

There are four subclasses of the abstract base WorkingCopy class:

	SubversionWorkingCopy,

	MercurialWorkingCopy,

	GitWorkingCopy,

	BazaarWorkingCopy.

Each of these subclasses implements the following interface:

	
class sumatra.versioncontrol.base.WorkingCopy(path=None)

	Represents, and enables limited interaction with, the version control system
working copy located in the path directory.

If path is not specified, the current working directory is assumed.

For each version control system supported by Sumatra, there is a specific
subclass of the abstract WorkingCopy base class.

	
contains(path)

	Does the repository contain the file with the given path?

where path is relative to the working copy root.

	
current_version()

	Return the version of the current state of the working copy.

	
diff()

	Return the difference between working copy and repository.

	
exists

	Does the working copy represented by this object actually exist?

	
get_username()

	Return the username and e-mail of the current user, as understood by the
version control system, in the format ‘username <e-mail>’.

	
has_changed()

	Are there any uncommitted changes to the working copy?

	
next()

	

	
required_attributes = (u'contains', u'current_version', u'use_version', u'use_latest_version', u'status', u'has_changed', u'diff', u'get_username')

	

	
status()

	Return a dict containing the sets of files that have been modified,
added, removed, are missing, not under version control (‘unknown’),
are being ignored, or are unchanged (‘clean’).

	
use_latest_version()

	Switch the working copy to the most recent version.

Any uncommitted changes are retained/merged in.

	
use_version(version)

	Switch the working copy to version.

If the working copy has uncommitted changes, raises an
UncommittedModificationsError.

Functions

It is seldom necessary to create a Repository or WorkingCopy
object directly, or even to know which version control system is in use.
Instead, the following functions will return the correct object, given a URL
or a filesystem path.

	
sumatra.versioncontrol.get_repository(url)

	Return a Repository object which represents, and enables limited
interaction with, the version control repository at url.

If no repository is found at url, raises a VersionControlError.

	
sumatra.versioncontrol.get_working_copy(path=None)

	Return a WorkingCopy object which represents, and enables limited
interaction with, the version control working copy at path.

If path is not specified, the current working directory is used.
If no working copy is found at path, raises a VersionControlError.

Exceptions

	
class sumatra.versioncontrol.VersionControlError

	

	
class sumatra.versioncontrol.UncommittedModificationsError

	

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

 	API reference

Formatting output

The formatting module provides classes for formatting simulation/analysis
records in different ways: summary, list or table; and in different mark-up
formats: currently text or HTML.

	copyright:	Copyright 2006-2015 by the Sumatra team, see doc/authors.txt

	license:	BSD 2-clause, see LICENSE for details.

Formatting Sumatra records

	
class sumatra.formatting.TextFormatter(records, project=None, tags=None)

	Bases: sumatra.formatting.Formatter

Format the information from a list of Sumatra records as text.

	
format(mode=u'short')

	Format a record according to the given mode. mode may be ‘short’,
‘long’ or ‘table’.

	
long(text_width=80, left_column_width=17)

	Return detailed information about a list of records, as text with a
limited column width. Lines that are too long will be wrapped round.

	
name = u'text'

	

	
next()

	

	
required_attributes = (u'short', u'long')

	

	
short()

	Return a list of record labels, one per line.

	
table()

	Return information about a list of records as text, in a simple
tabular format.

	
class sumatra.formatting.HTMLFormatter(records, project=None, tags=None)

	Bases: sumatra.formatting.Formatter

Format information about a group of Sumatra records as HTML fragments, to
be included in a larger document.

	
format(mode=u'short')

	Format a record according to the given mode. mode may be ‘short’,
‘long’ or ‘table’.

	
long()

	Return detailed information about a list of records as an HTML
description list.

	
name = u'html'

	

	
next()

	

	
required_attributes = (u'short', u'long')

	

	
short()

	Return a list of record labels as an HTML unordered list.

	
table()

	Return detailed information about a list of records as an HTML table.

	
sumatra.formatting.get_formatter(format)

	Return a Formatter object of the appropriate type. format
may be ‘text, ‘html’ or ‘textdiff’

Formatting the difference between two records

	
class sumatra.formatting.TextDiffFormatter(diff)

	Bases: sumatra.formatting.Formatter

Format information about the differences between two Sumatra records in
text format.

	
format(mode=u'short')

	Format a record according to the given mode. mode may be ‘short’,
‘long’ or ‘table’.

	
long()

	Return a detailed description of the differences between two records.

	
name = u'textdiff'

	

	
next()

	

	
required_attributes = (u'short', u'long')

	

	
short()

	Return a summary of the differences between two records.

	
sumatra.formatting.get_diff_formatter()

	Return a DiffFormatter object of the appropriate type. Only
text format is currently available.

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

 	API reference

Launching programs

The launch module handles launching of simulations/analyses as sub-processes, and
obtaining information about the platform(s) on which the simulations are run.

	copyright:	Copyright 2006-2015 by the Sumatra team, see doc/authors.txt

	license:	BSD 2-clause, see LICENSE for details.

	
class sumatra.launch.SerialLaunchMode(working_directory=None, options=None)

	Enable running serial computations.

	
check_files(executable, main_file)

	

	
generate_command(executable, main_file, arguments)

	Return a string containing the command to be launched.

	
get_platform_information()

	Return a list of PlatformInformation objects, containing information
about the machine(s) and environment(s) the computations are being
performed on/in.

	
name = u'serial'

	

	
next()

	

	
pre_run(executable)

	Run tasks before the simulation/analysis proper.

	
required_attributes = (u'check_files', u'generate_command')

	

	
run(executable, main_file, arguments, append_label=None)

	Run a computation in a shell, with the given executable, script and
arguments. If append_label is provided, it is appended to the
command line. Return True if the computation finishes successfully,
False otherwise.

	
class sumatra.launch.DistributedLaunchMode(n=1, mpirun=u'mpiexec', hosts=[], options=None, pfi_path=u'/usr/local/bin/pfi.py', working_directory=None)

	Enable running distributed computations using MPI.

The current implementation is specific to MPICH2, but this will be
generalised in future releases.

	
check_files(executable, main_file)

	

	
generate_command(executable, main_file, arguments)

	Return a string containing the command to be launched.

	
get_platform_information()

	Return a list of PlatformInformation objects, containing information
about the machine(s) and environment(s) the computations are being
performed on/in.

Requires the script pfi.py to be placed on the user’s path on
each node of the machine.

This is currently not useful, as I don’t think there is any guarantee
that we get the same n nodes that the command is run on. Need to look
more into this.

	
name = u'distributed'

	

	
next()

	

	
pre_run(executable)

	Run tasks before the simulation/analysis proper.

	
required_attributes = (u'check_files', u'generate_command')

	

	
run(executable, main_file, arguments, append_label=None)

	Run a computation in a shell, with the given executable, script and
arguments. If append_label is provided, it is appended to the
command line. Return True if the computation finishes successfully,
False otherwise.

	
class sumatra.launch.PlatformInformation(**kwargs)

	A simple container for information about the machine and environment the
computations are being performed on/in.

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

 	API reference

Parameter file formats

The parameters module handles different parameter file formats.

The original idea was that all parameter files will be converted to a single
internal parameter format, the NeuroTools ParameterSet class. This will allow
fancy searching/comparisons based on parameters. However, we don’t do this at
the moment, the only methods that are used are update() and save()

Classes

	NTParameterSet:

	handles parameter files in the NeuroTools parameter set format, based on
nested dictionaries.

	SimpleParameterSet:

	handles parameter files in a simple “name = value” format, with no nesting
or grouping.

	ConfigParserParameterSet

	handles parameter files in traditional config file format, as parsed by the
standard Python ConfigParser module.

	JSONParameterSet

	handles parameter files in JSON format

	YAMLParameterSet

	handles parameter files in YAML format

	copyright:	Copyright 2006-2015 by the Sumatra team, see doc/authors.txt

	license:	BSD 2-clause, see LICENSE for details.

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

 	API reference

Providing information about programs

The programs module handles simulator and analysis programs, i.e. executable
files, to support the ability to customize Sumatra’s behaviour for specific tools.

Classes

	Executable

	represents a generic executable, about which nothing is known except its
name. The base class for specific simulator/analysis tool classes.

	PythonExecutable

	represents the Python interpreter executable.

	MatlabExecutable

	represents the Matlab interpreter executable.

	NESTSimulator

	represents the NEST neuroscience simulator.

	NEURONSimulator

	represents the NEURON neuroscience simulator.

	GENESISSimulator

	represents the GENESIS neuroscience simulator.

	RExecutable

	represents the Rscript CLI to R interpreter executable.

Functions

	get_executable()

	Return an appropriate subclass of Executable, given either the path to an
executable file or a script file that can be run with a given tool.

	copyright:	Copyright 2006-2015 by the Sumatra team, see doc/authors.txt

	license:	BSD 2-clause, see LICENSE for details.

	
class sumatra.programs.Executable(path, version=None, options=u'', name=None)

	Bases: future.types.newobject.newobject

	
name = None

	

	
next()

	

	
required_attributes = (u'executable_names', u'file_extensions')

	

	
requires_script = False

	

	
static write_parameters(parameters, filebasename)

	

	
sumatra.programs.get_executable(path=None, script_file=None)

	Given the path to an executable, determine what program it is, if possible.
Given the name of a script file, try to infer the program that runs that
script.
Return an appropriate subclass of Executable

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

 	API reference

Managing projects

The projects module defines the Project class, which stores information
about a computation-based project and contains a number of methods for managing
and running computational experiments, whether simulations, analyses or
whatever. This is the main class that is used directly when using Sumatra within
your own scripts.

	
class sumatra.projects.Project(name, default_executable=None, default_repository=None, default_main_file=None, default_launch_mode=None, data_store=u'default', record_store=u'default', on_changed=u'error', description=u'', data_label=None, input_datastore=None, label_generator=u'timestamp', timestamp_format=u'%Y%m%d-%H%M%S', allow_command_line_parameters=True, plugins=[])

	Bases: future.types.newobject.newobject

	
add_comment(label, comment, replace=False)

	

	
add_record(record)

	Add a simulation or analysis record.

	
add_tag(label, tag)

	

	
backup(remove_original=False)

	Create a new backup directory in the same location as the
project directory and copy the contents of the project
directory into the backup directory. Uses _get_project_file
to extract the path to the project directory.

	Returns:	
	backup_dir: the directory used for the backup

	
change_record_store(new_store)

	Change the record store that is used by this project.

	
compare(label1, label2, ignore_mimetypes=[], ignore_filenames=[])

	

	
data_label

	

	
delete_by_tag(tag, delete_data=False)

	Delete all records with a given tag. Return the number of records deleted.

	
delete_record(label, delete_data=False)

	Delete a record. Return 1 if the record is found.
Otherwise return 0.

	
export()

	

	
find_records(tags=None, reverse=False)

	

	
format_records(format=u'text', mode=u'short', tags=None, reverse=False)

	

	
get_record(label)

	Search for a record with the supplied label and return it if found.
Otherwise return None.

	
info()

	Show some basic information about the project.

	
launch(parameters={}, input_data=[], script_args=u'', executable=u'default', repository=u'default', main_file=u'default', version=u'current', launch_mode=u'default', label=None, reason=None, timestamp_format=u'default', repeats=None)

	Launch a new simulation or analysis.

	
load_plugins(*plugins)

	

	
most_recent()

	

	
new_record(parameters={}, input_data=[], script_args=u'', executable=u'default', repository=u'default', main_file=u'default', version=u'current', launch_mode=u'default', label=None, reason=None, timestamp_format=u'default')

	

	
next()

	

	
remove_plugins(*plugins)

	

	
remove_tag(label, tag)

	

	
repeat(original_label, new_label=None)

	

	
save()

	Save state to some form of persistent storage. (file, database).

	
show_diff(label1, label2, mode=u'short', ignore_mimetypes=[], ignore_filenames=[])

	

	
update_code(working_copy, version=u'current')

	Check if the working copy has modifications and prompt to commit or revert them.

	
valid_name_pattern = u'(?P<project>\\w+[\\w\\-]*)'

	

	
sumatra.projects.load_project(path=None)

	Read project from directory passed as the argument and return Project
object. If no argument is given, the project is read from the current
directory.

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

 	API reference

Handling provenance information

The records module defines the Record class, which gathers and stores
information about an individual simulation or analysis run.

	
class sumatra.records.Record(executable, repository, main_file, version, launch_mode, datastore, parameters={}, input_data=[], script_arguments=u'', label=None, reason=u'', diff=u'', user=u'', on_changed=u'error', input_datastore=None, stdout_stderr=u'Not launched.', timestamp=None, timestamp_format=u'%Y%m%d-%H%M%S')

	Bases: future.types.newobject.newobject

The Record class has two main roles: capturing information about
the context of a computation, and storing this information for later
retrieval.

	
command_line

	Return the command-line string for the computation captured by this
record.

	
delete_data()

	Delete any data files associated with this record.

	
describe(format=u'text', mode=u'long')

	Return a description of the record.

	mode:

	either ‘long’ or ‘short’

	format

	either ‘text’ or ‘html’

	
difference(other_record, ignore_mimetypes=[], ignore_filenames=[])

	Determine the difference between this computational experiment and
another (code, platform, results, etc.).

Return a RecordDifference object.

	
next()

	

	
register(working_copy)

	Record information about the environment.

	
run(with_label=False)

	Launch the simulation or analysis.

	with_label

	adds the record label either to the parameter file
(with_label=”parameters”) or to the end of the command line
(with_label=”cmdline”), and appends the label to the datastore
root. This allows the program being run to create files in a
directory specific to this run.

	
valid_name_pattern = u'(?P<label>\\w+[\\w|\\-\\.:/\\s]*)'

	

	
class sumatra.records.RecordDifference(recordA, recordB, ignore_mimetypes=[], ignore_filenames=[])

	Bases: future.types.newobject.newobject

Represents the difference between two Record objects.

	
code_differs

	

	
dependencies_differ

	

	
dependency_differences

	

	
ignore_filenames = [u'\\.log', u'^log']

	

	
ignore_mimetypes = []

	

	
input_data_differ

	

	
input_data_differences

	

	
launch_mode_differences

	

	
next()

	

	
output_data_differ

	

	
output_data_differences

	

	
parameter_differences

	

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

Frequently asked questions

Where does the name “Sumatra” come from?

It is based on the initial letters of “Simulation Management Tool”.
(Sumatra was originally conceived for tracking simulations, it was only later
that I realized it could equally well be used for any command-line driven
computation). Despite a certain geographical proximity [http://commons.wikimedia.org/wiki/File:1842_Greenleaf_Map_of_the_East_Indies,_Borneo,_Java,_Sumatra,_Thailand,_Vietnam_-_Geographicus_-_EastIndies-greenleaf-1842.jpg], it has nothing to do
with Java :-) (although it has certain similarities to Madagascar [http://www.ahay.org/wiki/Main_Page]).

When I run more than one simulation at once, Sumatra mixes up the output files. How can I make it associate the right files with the right simulation?

When you run a simulation/analysis, Sumatra looks for any new files within your
datastore root directory, and associates them with your computation. This means
that if you launch a second computation before the first one has finished
Sumatra can’t distinguish which files were produced by which computation. The
solution is to save the results for a given computation in a subdirectory whose
name is a unique id, and for Sumatra to look only in this subdirectory for
output files.

The easiest way to do this is to use the record label. First run:

$ smt configure --addlabel=cmdline

or:

$ smt configure --addlabel=parameters

Then Sumatra will add the record label (which is generated from the timestamp
unless you use the ‘--label‘ option to smt run) to either the command
line or the parameter file (as sumatra_label) for your script. It is then up to
your script to read this value and use it to name your output files
accordingly. Here is an example for a Python script, using the cmdline
option and ”./Data” set as the datastore root:

import sys
import os
options = sys.argv[1:]
label = options[-1] # label is added to the end of the command line

computations happen here, results stored in `output_data`

output_dir = os.path.join("Data", label)
os.mkdir(output_dir)
with open(os.path.join(output_dir, "mydata.txt"), 'w') as fp:
 fp.write(output_data)

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

Getting support

If you have a question about, or problems with using Sumatra, please post a
message on either the sumatra-users [https://groups.google.com/forum/#!forum/sumatra-users] or neuralensemble [https://groups.google.com/forum/#!forum/neuralensemble] Google Groups.

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

Release notes

	Sumatra 0.7.4 release notes

	Sumatra 0.7.3 release notes

	Sumatra 0.7.2 release notes

	Sumatra 0.7.0 release notes

	Sumatra 0.6.0 release notes

	Sumatra 0.5.3 release notes

	Sumatra 0.5.1 release notes

	Sumatra 0.5.0 release notes

	Sumatra 0.4.0 release notes

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

 	Release notes

Sumatra 0.7.4 release notes

October 16th 2015

Sumatra 0.7.4 is a bug-fix release. It fixes the following bugs:

	issue 301 [https://github.com/open-research/sumatra/issues/301]: “Upgrading fails when record store is not in .smt directory.”

	issue 287 [https://github.com/open-research/sumatra/issues/287]: “Using –addlabel=parameters raises TypeError(“can’t intern subclass of string”) in Python 2.7.”

In addition:

	Long version numbers/hashes are truncated in the record list view

	We have restored the diff view in the web interface, which was accidentally removed during the preparation of the 0.7.0 release.

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

 	Release notes

Sumatra 0.7.3 release notes

September 3rd 2015

Sumatra 0.7.3 is a bug-fix release. It fixes the following bugs:

	issue 274 [https://github.com/open-research/sumatra/issues/274]: “Download button does not download file.”

	issue 278 [https://github.com/open-research/sumatra/issues/278]: “Using –addlabel=parameters raises TypeError.”

	issue 280 [https://github.com/open-research/sumatra/issues/280]: “Input not shown in dataview (web interface).”

	issue 281 [https://github.com/open-research/sumatra/issues/281]: “smt configure –mirror has no effect”.

In addition:

	If the “reason” and “comment” fields are formatted as reStructuredText they are correctly
rendered in the list view (as well as in the detail view).

	Browsers (except Safari and IE) get a sensible filename when downloading data files.

	Fixed a failure to find input data files when the datastore root is not set to the working directory.

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

 	Release notes

Sumatra 0.7.2 release notes

July 9th 2015

Sumatra 0.7.2 is a bug-fix release. It fixes the following bugs:

	issue 268 [https://github.com/open-research/sumatra/issues/268]: “Using @capture decorator makes python “print” unusable.”

	issue 269 [https://github.com/open-research/sumatra/issues/269]: “smt init fails if yaml is not defined”.

	issue 270 [https://github.com/open-research/sumatra/issues/270]: Unhelpful error message if gitpython not installed.

In addition, the stdout_stderr field in smtweb now displays line breaks.

(Release 0.7.1 fixed an installation problem - issue 266 [https://github.com/open-research/sumatra/issues/266])

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

 	Release notes

Sumatra 0.7.0 release notes

3rd July 2015

Welcome to Sumatra 0.7.0!

This version of Sumatra brings some major improvements for users, including an
improved web browser interface, improved support for the R language, Python 3
compatibility, a plug-in interface making Sumatra easier to extend and
customize, and support for storing data using WebDAV.

In addition, there have been many changes under the hood, including a move to
Github and improvements to the test framework, largely supported by the use of
Docker.

Last but not least, we have changed licence from the CeCILL licence (GPL-compatible)
to a BSD 2-Clause Licence, which should make it easier for other developers to
use Sumatra in their own projects.

Updated and extended web interface

Thanks to Felix Hoffman’s Google Summer of Code project, the web browser
interface now provides the option of viewing the history of your project
either in a “process-centric” view, as in previous versions, where each row in
the table represents a computation, or in a “data-centric” view, where each row
is a data file. Where the output from one computation is the input to another,
additional links make it possible to follow these connections.

The web interface has also had a cosmetic update and several other improvements,
including a more powerful comparison view (see screenshot). Importantly, the
interface layout no longer breaks in narrower browser windows.

[image: ../_images/compare_records.png]

BSD licence

The Sumatra project aims to provide not only tools for scientists as end users
(such as smt and smtweb), but also library components for developers
to add Sumatra’s functionality to their own tools. To support this
second use, we have switched licence from CeCILL (GPL-compatible) to the
BSD 2-Clause Licence.

Python 3 support

In version 0.6.0, Sumatra already supported provenance capture for projects
using Python 3, but required Python 2.6 or 2.7 to run.
Thanks to Tim Tröndle, Sumatra now also runs in Python 3.4.

Plug-in interface

To support the wide diversity of workflows in scientific computing, Sumatra has
always had an extensible architecture. It is intended to be easy to add support
for new database formats, new programming languages, new version control systems,
or new ways of launching computations.

Until now, adding such extensions has required that the code be included in
Sumatra’s code base. Version 0.7.0 adds a plug-in interface, so you can define
your own local extensions, or use other people’s.

For more information, see Extending Sumatra with plug-ins.

WebDAV support

The option to archive output data files has been extended to allow archiving to a
remote server using the WebDAV protocol.

Support for the R language

Sumatra will now attempt to determine the versions of all external packages loaded by an R script.

Other changes

For developers, there has been a significant change - the project has moved from Mercurial to Git,
and is now hosted on Github [https://github.com/open-research/sumatra]. Testing has also been significantly improved, with more system/integration
testing, and the use of Docker [https://www.docker.com] for testing PostgreSQL and WebDAV support.

Parsing of command-line parameters has been improved. The ParameterSet classes now have a diff()
method, making it easier to see the difference between two parameter sets, especially for large and hierarchical
sets.

Following the recommendation of the Mercurial developers [https://mercurial.selenic.com/wiki/MercurialApi#Why_you_shouldn.27t_use_Mercurial.27s_internal_API], and to enable the change of licence to BSD, we no longer
use the Mercurial internal API. Instead we use the Mercurial command line interface via the hgapi [https://hgapi.readthedocs.org/] package.

Bug fixes

A fair number of bugs [https://github.com/open-research/sumatra/issues?q=is%3Aissue+milestone%3A0.7+is%3Aclosed+label%3Abug] have been fixed.

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

 	Release notes

Sumatra 0.6.0 release notes

18th April 2014

Welcome to Sumatra 0.6.0!

This version of Sumatra sees many new features, improvements to existing ones,
and bug fixes:

New export formats: LaTeX and bash script

You can now export your project history as a LaTeX document, allowing you to
easily generate a PDF listing details of all the simulations or data analyses
you’ve run.

$ smt list -l -f latex > myproject.tex

Using tags, you can also restrict the output to only a subset of
the history.

You can also generate a shell script, which can be executed to repeat the
sequence of computations captured by Sumatra, or saved as an executable record
of your work. The shell script includes all version control commands needed to
ensure the correct version of the code is used at each step.

$ smt list -l -f shell > myproject.sh

Working with multiple VCS branches

Previous versions of Sumatra would always update to the latest version of the
code in your version control repository before running the computation.

Now, “smt run” will never change the working copy, which makes it much easier
to work with multiple version control branches and to go back to running earlier
versions of your code.

Programs that read from stdin or write to stdout

Programs that read from standard input or write to standard output can now be run
with smt run. For example, if the program is normally run using:

$ myprog < input > output

You can run it with Sumatra using:

$ smt run -e myprog -i input -o output

Improvements to the Web browser interface

There have been a number of small improvements to the browser interface:

	a slightly more compact and easier-to-read (table-like) layout for parameters;

	the working directory is now displayed in the record detail view;

	the interface now works if record label contain spaces or forward slashes.

The minimal Django version needed is now 1.4.

Support for PostgreSQL

The default record store for Sumatra is based on the Django ORM, using SQLite as the
backend. It is now possible to use PostgreSQL instead of SQLite, which gives better
performance and allows the Sumatra record store to be placed on a separate server.

To set up a new Sumatra project using PostgreSQL, you will first have to create a
database using the PostgreSQL tools (psql, etc.). You then configure
Sumatra as follows:

$ smt init --store=postgres://username:password@hostname/databasename MyProject

Note that the database tables will not be created until after the first smt run.

Integration with the SLURM resource manager

Preliminary support for launching MPI computations via SLURM [https://computing.llnl.gov/linux/slurm/] has been added.

$ smt configure --launch_mode=slurm-mpi
$ smt run -n 256 input_file1 input_file2

This will launch 256 tasks using salloc and mpiexec.

Command-line options for SLURM can also be set using smt configure

$ smt configure --launch_mode_options=" --tasks-per-node=1"

If you are using mpiexec on its own, without a resource manager, you
can set MPI command-line options in the same way.

Improvements to the @capture decorator

The @capture decorator, which makes it easy to add Sumatra support to
Python scripts (as an alternative to using the smt command), now
captures stdout and stderr.

Improvements to parameter file handling

Where a parameter file has a standard mime type (like json, yaml), Sumatra
uses the appropriate extension if rewriting the file (e.g. to add parameters
specified on the command line), rather than the generic ”.param”.

Migrating data files

If you move your input and/or output data files, either within the filesystem
on your current computer or to a new computer, you need to tell Sumatra about
it so that it can still find your files. For this there is a new command,
smt migrate. This command also handles changes to the location of
the data archive, if you are using one, and changes to the base URL of any
mirrored data stores. For usage information, run:

$ smt help migrate

Miscellaneous improvements

	smt run now passes unknown keyword args on to the user program.
There is also a new option ‘–plain’ which prevents arguments of the form
“x=y” being interpreted by Sumatra; instead they are passed straight
through to the program command line.

	When repeating a computation, the label of the original is now stored in the
repeats attribute of Record, rather than appending “_repeat” to the
original label. The new record will get a new unique label, or a label
specified by the user. This means a record can be repeated more than once,
and is a more reliable method of indicating a repeat.

	A Sumatra project now knows the version of Sumatra with which it was created.

	smt list now has an option ‘-r’/’–reverse’ which lists records
oldest to newest.

Bug fixes

A fair number of bugs [https://bitbucket.org/apdavison/sumatra/issues?status=resolved&milestone=0.6&sort=created_on] have been fixed.

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

 	Release notes

Sumatra 0.5.3 release notes

April 9th 2014

Sumatra 0.5.3 is a minor release that adds support for the ISO datetime format and fixes a problem when trying to
move a project to another machine.

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

 	Release notes

Sumatra 0.5.1 release notes

March 31st 2013

Sumatra 0.5.1 is a bug-fix release. It adds support for Django 1.5, and fixes
the following bugs:

	ticket:162 “Can’t use main files not in current directory when using git”

	ticket:163 “If main file is set but executable is unrecognized, main file isn’t run”

	ticket:164 “Command line JSON parameter files which are not intended as ‘parameter files’ get broken”

	uncaught exception in have_internet_connection()

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

 	Release notes

Sumatra 0.5.0 release notes

February 18th 2013

Welcome to Sumatra 0.5.0!

Overview

Sumatra 0.5 development has mostly been devoted to polishing. There were a bunch
of small improvements, with contributions from several new contributors. The
Bitbucket [https://bitbucket.org/apdavison/sumatra] pull request workflow seemed to work well for this. The main changes
are:

	working directory now captured (as a parameter of LaunchMode);

	data differences are now based on content, not name, i.e. henceforth two files
with identical content but different names (e.g. because the name contains a
timestamp) will evaluate as being the same;

	improved error messages when a required version control wrapper is not
installed;

	dependencies now capture the source from which the version was obtained
(e.g. repository url);

	YAML-format parameter files are now supported (thanks to Tristan Webb);

	added “upstream” attribute to the Repository class, which may contain
the URL of the repository from which your local repository was cloned;

	added MirroredFileSystemDataStore, which supports the case where files
exist both on the local filesystem and on some web server (e.g. DropBox);

	the name/e-mail of the user who launched the computation is now captured
(first trying ~/.smtrc, then the version control system);

	there is now a choice of methods for auto-generating labels when they are not
supplied by the user: timestamp-based (the default and previously the only
option) and uuid-based. Use the “-g” option to smt configure;

	you can also specify the timestamp format to use (thanks to Yoav Ram);

	improved API reference documentation.

Interfaces to documentation systems

The one big addition to Sumatra is a set of tools to include figures and other
results generated by Sumatra-tracked computations in documents, with links to
full provenance information: i.e. the full details of the code, input data and
computational environment used to generate the figure/result.

The following tools are available:

	for reStructuredText/Sphinx: an “smtlink” role and “smtimage” directive.

	for LaTeX, a “sumatra” package, which provides the “\smtincludegraphics” command.

see Reproducible publications: including and linking to provenance information in documents for more details.

Bug fixes

A handful of bugs [https://neuralensemble.org/trac/sumatra/query?status=closed&group=resolution&milestone=0.5] have been fixed.

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sumatra 0.7.4 documentation

 	Release notes

Sumatra 0.4.0 release notes

October 18th 2012

Welcome to Sumatra 0.4.0!

Overview

The biggest change in Sumatra 0.4 is the redesign of the browser-based interface,
launched with smtweb. Thanks to the Google Summer of Code [http://www.google-melange.com/gsoc/homepage/google/gsoc2012] program,
Dmitry Samarkanov was able to spend his summer working on improving Sumatra, with
the results being a much improved web interface, better support for running
Sumatra on Windows, and better support for running Matlab scripts with Sumatra.
Many thanks to Google and to the INCF [http://www.incf.org] as mentoring organisation. In addition to
Dmitry’s improvements, handling of input and output data files is much improved,
and Sumatra now captures and stores standard output (stdout) and standard error
(stderr) streams. More details on all of these, plus a bunch of minor
improvements and bug fixes, is given below. Finally, Sumatra no longer supports
Python 2.5 - the minimum requirement is Python 2.6.

Web interface

The Sumatra browser-based interface runs a local webserver on your computer,
and allows you to browse the information that Sumatra captures about your
analyses, simulations or other computations, including code versions, input
and output data files, parameter/configuration files, the operating system and
processor architecture.

The interface has been completely redesigned for Sumatra 0.4, and includes
dozens of large and small improvements, including:

	a more modern, attractive design

	the ability to select which columns to display in the record list view

	the ability to search all of your records based on date, tags or full-text

	side-by-side comparison of records

	sorting of records based on any column

	selection of multiple records by clicking or dragging for deletion, comparison and tagging

Furthermore, it is now possible to launch computations from the browser interface.

For more information, see Using the web interface and this blog post [http://samarkanov.com/blog/sumatra-running-the-simulations-from-web-interface/] from Dmitry
Samarkanov.

Data file handling

In earlier versions of Sumatra, the filename (or rather, the file path relative
to a user-defined root) was used as the identifier for input and output data
files. The problem with this, of course, is that it is possible to overwrite a
given file with new data. For this reason, Sumatra 0.4 now calculates and stores
the SHA1 hash of the file contents. If the file contents change, the hash will
also change, so that Sumatra can alert you if a file is accidentally overwritten,
for example.

Sumatra 0.4 also adds a new data store which automatically archives a copy of
the output data from your computations in a user-selected location. This data
store is accessible through the API as the ArchivingFileSystemDataStore
class, or through the smt command-line interface with the “–archive”
option to the “init” and “configure” commands.

Finally, Sumatra now allows the user the choice of whether to use an absolute or
relative path for the data store root directory. Using a relative path makes
projects easier to move and easier to access from other locations (e.g. with
symbolic links or NFS).

Matlab support

Sumatra can capture certain information for any command-line tool: input and
output data, version of the main codebase, operating system and processor
architecture, etc. For dependency information, however (i.e. which libraries,
modules or packages are imported/included by your main script), a separate
plugin is required for each language. Sumatra already has a dependency tracking
plugin for Python and for two computational neuroscience simulation environments,
NEURON and GENESIS. Sumatra 0.4 adds dependency tracking for Matlab scripts.

Recording of stdout and stderr

Sumatra 0.4 now supports recording and storage of the standard output and
standard error streams from your scripts.

Other new features

	added support for JSON-format parameter files;

	added smt export command, which allows the contents of a Sumatra
record store to be exported in JSON format;

	more information is now printed by smt list --long;

	the Python dependency finder now supports scripts run with Python 3 (although
Sumatra itself still needs Python 2);

	can now specify HttpRecordStore username and password as part of the
URL passed to smt init;

	added support for markup using reStructuredText in the project description

	it is no longer required to have a script file, which makes it possible to
use Sumatra with your own compiled executables. Further support for compiled
languages is planned for the next release.

Bug fixes

A whole bunch of bugs [https://neuralensemble.org/trac/sumatra/query?status=closed&group=resolution&milestone=0.4] were fixed in Sumatra 0.4.

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Sumatra 0.7.4 documentation

Authors and contributors

The following people have contributed code to Sumatra. The institutional
affiliations are those at the times of the contributions, and may not be the
current affiliation of a contributor.

	Andrew Davison [1]

	Dmitry Samarkanov [2]

	Bartosz Telenczuk [1, 3]

	Michele Mattioni [4]

	Eilif Muller [5]

	Konrad Hinsen [6]

	Stephan Gabler [7]

	Takafumi Arakaki [8]

	Yoav Ram

	Tristan Webb [9]

	Maximilian Albert [10]

	Daniel Wheeler [11]

	Tim Joseph Dumol

	Julia Evans

	Jaime Ashander[12]

	Tim Tröndle [13]

	Unité de Neuroscience, Information et Complexité, CNRS UPR 3293, Gif-sur-Yvette, France

	Ecole Centrale de Lille, Lille, France

	Institute for Theoretical Biology, Humboldt University zu Berlin, Berlin, Germany

	European Bioinformatics Institute, Hinxton, UK

	Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

	Centre de biophysique moléculaire, CNRS UPR 4301, Orléans, France

	Max Planck Institute for Human Development, Berlin, Germany

	Laboratoire de Neurophysique et Physiologie, CNRS UMR 8119, Université Paris Descartes, Paris, France

	Warwick University, UK

	University of Southampton, UK

	National Institute of Standards and Technology, USA

	University of California–Davis, USA

	Younicos AG, Berlin, Germany

If we’ve somehow missed you off the list I’m very sorry - please let us know.

Many thanks also go to everyone who has reported bugs on the issue tracker.

Licence

Sumatra is freely available under the BSD 2-clause license.

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Sumatra 0.7.4 documentation

 Python Module Index

 s

 			

 		
 s	

 	[image: -]
 	
 sumatra	

 	
 	
 sumatra.dependency_finder	

 	
 	
 sumatra.formatting	

 	
 	
 sumatra.launch	

 	
 	
 sumatra.parameters	

 	
 	
 sumatra.programs	

 	
 	
 sumatra.recordstore.serialization	

 	
 	
 sumatra.versioncontrol	

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Sumatra 0.7.4 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	

 	add_comment() (sumatra.projects.Project method)

 	add_record() (sumatra.projects.Project method)

 	add_tag() (sumatra.projects.Project method)

 	

 	archive_store (sumatra.datastore.ArchivingFileSystemDataStore attribute)

 	ArchivedDataFile (class in sumatra.datastore.archivingfs)

 	ArchivingFileSystemDataStore (class in sumatra.datastore)

B

 	

 	backup() (sumatra.projects.Project method)

 	BaseDependency (class in sumatra.dependency_finder.core)

 	

 	build_record() (in module sumatra.recordstore.serialization)

C

 	

 	change_record_store() (sumatra.projects.Project method)

 	check_files() (sumatra.launch.DistributedLaunchMode method)

 	

 	(sumatra.launch.SerialLaunchMode method)

 	checkout() (sumatra.versioncontrol.base.Repository method)

 	code_differs (sumatra.records.RecordDifference attribute)

 	command_line (sumatra.records.Record attribute)

 	compare() (sumatra.projects.Project method)

 	

 	contains() (sumatra.versioncontrol.base.WorkingCopy method)

 	contains_path() (sumatra.datastore.base.DataStore method)

 	copy() (sumatra.datastore.base.DataStore method)

 	create_project() (sumatra.recordstore.HttpRecordStore method)

 	current_version() (sumatra.versioncontrol.base.WorkingCopy method)

D

 	

 	data_label (sumatra.projects.Project attribute)

 	DataFile (class in sumatra.datastore.filesystem)

 	DataItem (class in sumatra.datastore.base)

 	DataKey (class in sumatra.datastore)

 	DataStore (class in sumatra.datastore.base)

 	decode_record() (in module sumatra.recordstore.serialization)

 	decode_records() (in module sumatra.recordstore.serialization)

 	delete() (sumatra.datastore.base.DataStore method)

 	

 	(sumatra.recordstore.base.RecordStore method)

 	delete_all() (sumatra.recordstore.base.RecordStore method)

 	delete_by_tag() (sumatra.projects.Project method)

 	

 	(sumatra.recordstore.base.RecordStore method)

 	

 	delete_data() (sumatra.records.Record method)

 	delete_record() (sumatra.projects.Project method)

 	dependencies_differ (sumatra.records.RecordDifference attribute)

 	dependency_differences (sumatra.records.RecordDifference attribute)

 	describe() (sumatra.records.Record method)

 	diff() (sumatra.versioncontrol.base.WorkingCopy method)

 	difference() (sumatra.records.Record method)

 	digest (sumatra.datastore.base.DataItem attribute)

 	

 	(sumatra.datastore.DataKey attribute)

 	DistributedLaunchMode (class in sumatra.launch)

 	DjangoRecordStore (class in sumatra.recordstore)

E

 	

 	encode_project_info() (in module sumatra.recordstore.serialization)

 	encode_record() (in module sumatra.recordstore.serialization)

 	
 environment variable

 	

 	PYTHONPATH

 	Executable (class in sumatra.programs)

 	

 	exists (sumatra.versioncontrol.base.Repository attribute)

 	

 	(sumatra.versioncontrol.base.WorkingCopy attribute)

 	export() (sumatra.projects.Project method)

 	

 	(sumatra.recordstore.base.RecordStore method)

 	export_records() (sumatra.recordstore.base.RecordStore method)

 	extension (sumatra.datastore.DataFile attribute)

F

 	

 	FileSystemDataStore (class in sumatra.datastore)

 	find_dependencies() (in module sumatra.dependency_finder)

 	

 	(in module sumatra.dependency_finder.genesis)

 	(in module sumatra.dependency_finder.matlab)

 	(in module sumatra.dependency_finder.neuron)

 	(in module sumatra.dependency_finder.python)

 	(in module sumatra.dependency_finder.r)

 	find_file() (in module sumatra.dependency_finder.core)

 	find_imported_packages() (in module sumatra.dependency_finder.python)

 	find_included_files() (in module sumatra.dependency_finder.genesis)

 	find_loaded_files() (in module sumatra.dependency_finder.neuron)

 	find_new_data() (sumatra.datastore.base.DataStore method)

 	find_records() (sumatra.projects.Project method)

 	

 	find_versions() (in module sumatra.dependency_finder.core)

 	find_versions_by_attribute() (in module sumatra.dependency_finder.python)

 	find_versions_from_egg() (in module sumatra.dependency_finder.python)

 	find_versions_from_versioncontrol() (in module sumatra.dependency_finder.core)

 	find_xopened_files() (in module sumatra.dependency_finder.neuron)

 	format() (sumatra.formatting.HTMLFormatter method)

 	

 	(sumatra.formatting.TextDiffFormatter method)

 	(sumatra.formatting.TextFormatter method)

 	format_records() (sumatra.projects.Project method)

 	full_path (sumatra.datastore.DataFile attribute)

G

 	

 	generate_command() (sumatra.launch.DistributedLaunchMode method)

 	

 	(sumatra.launch.SerialLaunchMode method)

 	generate_key() (sumatra.datastore.base.DataItem method)

 	generate_keys() (sumatra.datastore.base.DataStore method)

 	get() (sumatra.recordstore.base.RecordStore method)

 	get_content() (sumatra.datastore.base.DataItem method)

 	

 	(sumatra.datastore.base.DataStore method)

 	get_data_item() (sumatra.datastore.base.DataStore method)

 	get_diff_formatter() (in module sumatra.formatting)

 	get_executable() (in module sumatra.programs)

 	

 	get_formatter() (in module sumatra.formatting)

 	get_platform_information() (sumatra.launch.DistributedLaunchMode method)

 	

 	(sumatra.launch.SerialLaunchMode method)

 	get_record() (sumatra.projects.Project method)

 	get_record_store() (in module sumatra.recordstore)

 	get_repository() (in module sumatra.versioncontrol)

 	get_username() (sumatra.versioncontrol.base.WorkingCopy method)

 	get_working_copy() (in module sumatra.versioncontrol)

 	

 	(sumatra.versioncontrol.base.Repository method)

H

 	

 	has_changed() (sumatra.versioncontrol.base.WorkingCopy method)

 	has_project() (sumatra.recordstore.base.RecordStore method)

 	

 	HTMLFormatter (class in sumatra.formatting)

 	HttpRecordStore (class in sumatra.recordstore)

I

 	

 	ignore_filenames (sumatra.records.RecordDifference attribute)

 	ignore_mimetypes (sumatra.records.RecordDifference attribute)

 	import_() (sumatra.recordstore.base.RecordStore method)

 	

 	info() (sumatra.projects.Project method)

 	input_data_differ (sumatra.records.RecordDifference attribute)

 	input_data_differences (sumatra.records.RecordDifference attribute)

L

 	

 	labels() (sumatra.recordstore.base.RecordStore method)

 	launch() (sumatra.projects.Project method)

 	launch_mode_differences (sumatra.records.RecordDifference attribute)

 	list() (sumatra.recordstore.base.RecordStore method)

 	

 	list_projects() (sumatra.recordstore.base.RecordStore method)

 	load_plugins() (sumatra.projects.Project method)

 	load_project() (in module sumatra.projects)

 	long() (sumatra.formatting.HTMLFormatter method)

 	

 	(sumatra.formatting.TextDiffFormatter method)

 	(sumatra.formatting.TextFormatter method)

M

 	

 	metadata (sumatra.datastore.DataKey attribute)

 	mimetype (sumatra.datastore.DataFile attribute)

 	mirror_base_url (sumatra.datastore.MirroredFileSystemDataStore attribute)

 	

 	MirroredDataFile (class in sumatra.datastore.mirroredfs)

 	MirroredFileSystemDataStore (class in sumatra.datastore)

 	most_recent() (sumatra.projects.Project method)

 	

 	(sumatra.recordstore.base.RecordStore method)

N

 	

 	name (sumatra.datastore.DataFile attribute)

 	

 	(sumatra.formatting.HTMLFormatter attribute)

 	(sumatra.formatting.TextDiffFormatter attribute)

 	(sumatra.formatting.TextFormatter attribute)

 	(sumatra.launch.DistributedLaunchMode attribute)

 	(sumatra.launch.SerialLaunchMode attribute)

 	(sumatra.programs.Executable attribute)

 	new_record() (sumatra.projects.Project method)

 	

 	next() (sumatra.datastore.base.DataItem method)

 	

 	(sumatra.datastore.DataKey method)

 	(sumatra.datastore.base.DataStore method)

 	(sumatra.formatting.HTMLFormatter method)

 	(sumatra.formatting.TextDiffFormatter method)

 	(sumatra.formatting.TextFormatter method)

 	(sumatra.launch.DistributedLaunchMode method)

 	(sumatra.launch.SerialLaunchMode method)

 	(sumatra.programs.Executable method)

 	(sumatra.projects.Project method)

 	(sumatra.records.Record method)

 	(sumatra.records.RecordDifference method)

 	(sumatra.versioncontrol.base.Repository method)

 	(sumatra.versioncontrol.base.WorkingCopy method)

O

 	

 	output_data_differ (sumatra.records.RecordDifference attribute)

 	

 	output_data_differences (sumatra.records.RecordDifference attribute)

P

 	

 	parameter_differences (sumatra.records.RecordDifference attribute)

 	path (sumatra.datastore.DataFile attribute)

 	

 	(sumatra.datastore.DataKey attribute)

 	PlatformInformation (class in sumatra.launch)

 	pre_run() (sumatra.launch.DistributedLaunchMode method)

 	

 	(sumatra.launch.SerialLaunchMode method)

 	

 	Project (class in sumatra.projects)

 	project_info() (sumatra.recordstore.HttpRecordStore method)

 	PYTHONPATH

R

 	

 	Record (class in sumatra.records)

 	RecordDifference (class in sumatra.records)

 	RecordStore (class in sumatra.recordstore.base)

 	register() (sumatra.records.Record method)

 	remove_plugins() (sumatra.projects.Project method)

 	remove_tag() (sumatra.projects.Project method)

 	

 	repeat() (sumatra.projects.Project method)

 	Repository (class in sumatra.versioncontrol.base)

 	required_attributes (sumatra.datastore.base.DataStore attribute)

 	

 	(sumatra.formatting.HTMLFormatter attribute)

 	(sumatra.formatting.TextDiffFormatter attribute)

 	(sumatra.formatting.TextFormatter attribute)

 	(sumatra.launch.DistributedLaunchMode attribute)

 	(sumatra.launch.SerialLaunchMode attribute)

 	(sumatra.programs.Executable attribute)

 	(sumatra.recordstore.base.RecordStore attribute)

 	(sumatra.versioncontrol.base.Repository attribute)

 	(sumatra.versioncontrol.base.WorkingCopy attribute)

 	requires_script (sumatra.programs.Executable attribute)

 	root (sumatra.datastore.FileSystemDataStore attribute)

 	run() (sumatra.launch.DistributedLaunchMode method)

 	

 	(sumatra.launch.SerialLaunchMode method)

 	(sumatra.records.Record method)

S

 	

 	save() (sumatra.projects.Project method)

 	

 	(sumatra.recordstore.base.RecordStore method)

 	save_copy() (sumatra.datastore.base.DataItem method)

 	save_dependencies() (in module sumatra.dependency_finder.matlab)

 	SerialLaunchMode (class in sumatra.launch)

 	ShelveRecordStore (class in sumatra.recordstore)

 	short() (sumatra.formatting.HTMLFormatter method)

 	

 	(sumatra.formatting.TextDiffFormatter method)

 	(sumatra.formatting.TextFormatter method)

 	show_diff() (sumatra.projects.Project method)

 	size (sumatra.datastore.DataFile attribute)

 	sorted_content() (sumatra.datastore.base.DataItem method)

 	status() (sumatra.versioncontrol.base.WorkingCopy method)

 	

 	sumatra.dependency_finder (module)

 	sumatra.formatting (module)

 	sumatra.launch (module)

 	sumatra.parameters (module)

 	sumatra.programs (module)

 	sumatra.recordstore.serialization (module)

 	sumatra.versioncontrol (module)

 	sync() (sumatra.recordstore.base.RecordStore method)

 	sync_all() (sumatra.recordstore.base.RecordStore method)

T

 	

 	table() (sumatra.formatting.HTMLFormatter method)

 	

 	(sumatra.formatting.TextFormatter method)

 	TextDiffFormatter (class in sumatra.formatting)

 	

 	TextFormatter (class in sumatra.formatting)

U

 	

 	UncommittedModificationsError (class in sumatra.versioncontrol)

 	update() (sumatra.recordstore.base.RecordStore method)

 	update_code() (sumatra.projects.Project method)

 	update_project_info() (sumatra.recordstore.HttpRecordStore method)

 	

 	upstream (sumatra.versioncontrol.Repository attribute)

 	url (sumatra.versioncontrol.Repository attribute)

 	use_latest_version() (sumatra.versioncontrol.base.WorkingCopy method)

 	use_version() (sumatra.versioncontrol.base.WorkingCopy method)

V

 	

 	valid_name_pattern (sumatra.projects.Project attribute)

 	

 	(sumatra.records.Record attribute)

 	vcs_type (sumatra.versioncontrol.base.Repository attribute)

 	

 	VersionControlError (class in sumatra.versioncontrol)

W

 	

 	WorkingCopy (class in sumatra.versioncontrol.base)

 	

 	write_parameters() (sumatra.programs.Executable static method)

 Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

 _static/comment.png

_static/ajax-loader.gif

_static/sumatra_logo.png
Sumatra

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Sumatra 0.7.4 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

_static/comment-bright.png

_static/down.png

_static/up.png

_static/minus.png

_static/comment-close.png

_static/plus.png

_static/down-pressed.png

_images/detail_view1.png
A MyProject 20150526-140238

20150526-140238

$ /Users/andrew/anaconda/envs/sumatra/bin/python main.py <parameters>

Run on 26/05/2015 14:02:38 by Andrew Davison <andrew.davison@unic.cnrs-gif.fr>

Working directory: /Users/andrew/tmp/sumatra_example_projects/myproject
Code version: 9f99c53062cf49bb93e5ab0828d0ce897fccc372
Repository: /Users/andrew/tmp/sumatra_example_projects/myproject
Python version: 2.7.9
Reason: Changed filename # Edit
Tags: " Edit
Parameters
n: 100
seed: 65785

filename: Data/example.dat
distr: uniform

_images/selecting_rows.png
fa MyProject 9~

My Project
Search:

Label Date/Time | Reason Outcome Input data Output data Duration Executable Main Version Tags
20150526- 26/05/2015 Changed example.dat 0.06s Python 2.7.9 main.py 9f99c53062cf49bb93e5ab0828d0ce897fccc372
140238 14:02:38 filename
20150526- 26/05/2015 Repeat The new record example2.dat 0.07s Python 2.7.9 main.py bac1db1b9ec5c90ffe8aabe59e8a5aab5f56340f
135246 13:52:46 experiment exactly matches

haggling the original.
20150526- 26/05/2015 Use a different example2.dat 0.06s Python 2.7.9 main.py bac1db1b9ec5c90ffe8aabe59e8a5aab5f56340f
135236 13:52:36 seed
20150526- 26/05/2015 test effect of a example2.dat 0.06s Python 2.7.9 main.py bac1db1b9ec5c90ffe8aabe59e8a5aab5f56340f
135206 13:52:06 smaller time

constant
haggling 26/05/2015 determine apparently, it is example2.dat 0.07s Python 2.7.9 main.py bac1db1b9ec5c90ffe8aabe59e8a5aab5f56340f foobar

13:51:21 whether the worth NaN

gourd is worth 3 shekels.

or 4 shekels
20150526- 26/05/2015 Eureka! Nobel example2.dat 0.07s Python 2.7.9 main.py bac1db1b9ec5c90ffe8aabe59e8a5aab5f56340f
135104 13:51:04 prize here we

come.

_images/project_list.png
My Project

7 records

This is a description of my project. Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat

non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

_images/compare_records1.png
ﬁ MyProject Comparison

Comparison of 20150526-140238 and 20150526-135236

Code

Ersion 9f99¢c53062cf49bb93e5ab0828d0ce897fccc372 Ersion bac1db1b9ec5c90ffeBaabe59e8a5aab5f56340f
Parameters

u seed: 65785 B seed: 356356546

filename: Data/example.dat

Output data

u example.dat 43a47cb379df2a7008fdeb38c6172278d000fdc4 None 2.4 KB B example2.dat 030089163fb6bfad3edc172ch28ceal27c1368d3 None 2.4 KB

_images/settings_dialog.png
Settings

Columns to display
Date/Time
Reason
Outcome
Input data
Output data
Duration
Processes
Executable
Main
Version
Arguments

Tags

Cancel Apply

_static/file.png

_images/detail_view2.png
Output data

Filename Path Digest Size Date/Time Output of Input to
example.dat example.dat 43a47cb37... 2.4 KB 26/05/2015 14:02:38 20150526-140238
Dependencies
Name Path Version
nose /Users/andrew/anaconda/envs/sumatra/lib/python2.7/site-packages/nose 134
numpy /Users/andrew/anaconda/envs/sumatra/lib/python2.7/site-packages/numpy 1.9.0
scipy /Users/andrew/anaconda/envs/sumatra/lib/python2.7/site-packages/scipy 0.14.0
Platform information
Name IP address Processor Architecture System type Release Version
unic198.inaf.cnrs-gif.fr 127.0.0.1 i386 x86_64 64bit Darwin 14.3.0 Darwin Kernel Version 14.3.0: Mon Mar 23 11:59:05 PDT 2015; root:xnu-2782.20.48~5/RELEASE_X86_64
Stdout & Stderr

No output.

_images/data_view.png
ﬁ MyProject

My Project

Record View About

Directory

Filename
example.dat
example2.dat
example2.dat
example2.dat

example2.dat

avamnla?® Aat

Digest

43a47¢cb37...
186b8134a...
030089163...
43a47cb37...

186b8134a...

NRaAAT7~RRAT7

Size

2.4 KB
1.2 KB
2.4 KB
2.4 KB

1.2KB

DA KR

Date/Time
26/05/2015 14:02:38
26/05/2015 13:52:46
26/05/2015 13:52:36
26/05/2015 13:52:06
26/05/2015 13:51:21

NDR/INE/DON1ERE 12-RE1-NA

1H

Output of

20150526-140238
20150526-135246
20150526-135236

20150526-135206

haggling

DN1ENERDA_12AR41NA

Search:

Input to

_images/data_detail.png
ﬁ MyProject Data

example.dat 43a47cba7adt2a7008idebasce172278dooofdc4 None 2.4 KB

Generated by on 26/05/2015 at 14:02:38

File contents cannot be shown.

Download

exercises/worksheet.html

 Navigation

 		
 index

 		
 modules |

 		Sumatra 0.7.4 documentation »

Hands-on exercises with Sumatra

		Author:		Andrew Davison <andrew.davison@unic.cnrs-gif.fr>

		Date:		2013-03-28

This worksheet will introduce you to the most important capabilities of Sumatra.
To learn more, check out the documentation at http://neuralensemble.org/sumatra/.
If you have questions, you will get answers in the sumatra-users Google Group
at https://groups.google.com/forum/#!forum/sumatra-users

As our example code, we will use a Python program for analyzing scanning
electron microscope (SEM) images of glass samples. This example was taken from
an online SciPy tutorial at http://scipy-lectures.github.io/intro/summary-exercises/image-processing.html

Get the example code

To run the example code, you will need to have the following Python packages
installed: numpy, scipy, matplotlib, mercurial.

Now get the code using:

$ hg clone https://bitbucket.org/apdavison/ircr2013 sumatra_exercise
$ cd sumatra_exercise

Let’s first run the computation without Sumatra:

$ python glass_sem_analysis.py default_parameters MV_HFV_012.jpg
1699.875 65.0

This program reads the parameter file default_parameters and the image file
MV_HFV_012.jpg. It crops the image to remove the black bar at the bottom,
filters the image, defines thresholds that distinguish between the different
phases in the image (sand grains, glass, bubbles), creates a new image with each
phase coloured differently, “cleans” the image and creates a figure showing the
before and after cleaning images. It then calculates some simple statistics on
the bubble size.

Take a look at the Data subdirectory. It should contain another subdirectory
labelled with today’s date, which in turn contains three image files.

Set up a Sumatra project

If you haven’t already installed Sumatra, check out the installation instructions
at http://pythonhosted.org/Sumatra/installation.html.

In the sumatra_exercise directory, run the following:

$ smt init -d Data -i . ProjectGlass

This creates a project with the name “ProjectGlass”, and tells Sumatra that
the output data files will be created within the “Data” directory and that the
input data files will be created in the current directory.

Now we can run the glass_sem_analysis.py script again, this time with
Sumatra:

$ smt run -e python -m glass_sem_analysis.py default_parameters MV_HFV_012.jpg

The “-e” stands for “executable” (you could also have used the long form:
--executable=python and the “-m” stands for “main file”. To avoid having to
specify the executable and main file every time, we can set these as defaults:

$ smt configure -e python -m glass_sem_analysis.py

after which we need only specify the parameter file and input image:

$ smt run default_parameters MV_HFV_012.jpg

Getting help

To get information about any of the “smt” commands, use smt help, e.g.:

$ smt help configure

To get a list of all available commands:

$ smt

Try looking at the help information on some of the other commands.
To see the current configuration of the project:

$ smt info

Reviewing previous computations

Let’s take a look at the information Sumatra has captured about the analyses we’ve
just run:

$ smt list

This gives a list of timestamps, each of which is an automatically-generated label
for one of the computations we’ve run. You can also define the label yourself
rather than have it be automatically generated. Run:

$ smt run -l example_label default_parameters MV_HFV_012.jpg

and then take another look at the output of smt list. To get more detail, use
the “long” option:

$ smt list -l

This gives a lot more information for each time we ran smt run:

		when it was run

		how long the computation took

		which program (name, location and version)

		which script (name, version control repository, version)

		parameters

		input data files

		results

Sumatra stores still more detail, but to look at it you will need to use a
web browser. Run:

$ smtweb

This launches a small webserver on your machine, and should open a new tab in your
default web browser. If it does not open a tab, open one yourself and navigate to
http://127.0.0.1:8000.

The first page shows just a list of projects. Of course, we have only one
so far. Click on the project name. This gives a list of all the computations
we’ve performed so far. Click on one of the labels. This shows all the details
that have been captured by Sumatra: all the information shown by smt list -l,
and in addition:

		the name, location and, where possible, the version of all of the
dependencies (NumPy, matplotlib, etc.) of our analysis script.

		information about the computing platform (processor architecture, operating system)

		all of the output printed by our program to the console.

In addition, you should be able to click on the filenames of the output data files
(the images generated by the glass_sem_analysis.py script) to see the
contents of the files.

Note also that next to each filename is a long hexadecimal number. This is the
SHA1 hash of the file contents, a unique summary of the file contents. If the
file is changed for any reason (e.g. accidentally overwritten, corrupted), the
SHA1 hash will also be changed, and this change will be detected by Sumatra.

You may have other tools on your computer for calculating SHA1 hashes. For one of
the image files listed, try typing:

$ shasum Data/20130329/MV_HFV_012_101808_sand.png

(replace the timestamp in the filename with the correct one on your computer).
If you don’t get a “command not found” message, then this will print the SHA1 hash
of the file contents. Check that it matches what is shown in the browser.

Adding further context

You will notice that the record contains empty text boxes labelled “Reason”,
“Outcome”. This lets you record additional information to help you
understand how this computation fits into your overall project: why did you
run this particular analysis with these particular parameters? What, in
qualitative terms, was the outcome - was it what you expected, was it a
surprise, or does it seem as though there is a bug in your program? This
information may seem obvious to you now, but in six months time when writing
a paper or responding to reviews, you might well have forgotten the details.

Try entering some information into those boxes now; don’t forget to click “Save changes”
when you’re done.

You can also edit this information from the command line. When you launch a
computation, use the -r option to enter a reason:

$ smt run -r "test adding reason from command line" default_parameters \
 MV_HFV_012.jpg

And afterwards, use the smt comment command to comment on the outcome:

$ smt comment "works fine"

The browser page also has a box for adding tags to a record, which can be
extremely useful in finding the record later, or in grouping related records.

Go ahead and add some tags (separated by commas) to a few records. Now if you
return to the main project page (click on “ProjectGlass”) you will see the tags
listed in the table and can use the Tag icon in the menu bar to filter the list
of records based on tags.

You can also add tags on the command line:

$ smt tag mytag 20130329-101802 20130329-101707

(replace the labels by actual labels from your project) and filter the output
of smt list based on tag:

$ smt list mytag

Working with parameters

Take a look at the file default_parameters. Let’s try changing some
parameters:

$ cp default_parameters no_filter

Now edit the file no_filter in a text editor, and change filter_size to 1.

$ smt run -r 'No filtering' no_filter MV_HFV_012.jpg

In the web browser, refresh the “ProjectGlass” page so that the most recent run
is shown in the list, then click somewhere in the row for that record (not on
the label) and drag the mouse pointer to also highlight the previous record.
Now click on “compare records”, which will give you a side-by-side view of the
two records, allowing you to easily see how changing the filter size has
changed the results.

You can also change parameters from the command line. Try:

$ smt run -r 'Trying a different colourmap' default_parameters \
 MV_HFV_012.jpg phases_colourmap=hot

and again do a side-by-side comparison.

$ smt comment 'The default colourmap is nicer'

Changing your code

The output printed by the glass_sem_analysis.py is not very useful. Let’s add
some labels. Open the file in a text editor and replace:

print mean_bubble_size, median_bubble_size

with:

print "Mean:", mean_bubble_size
print "Median:", median_bubble_size

Now let’s run it again:

$ smt run -r 'Added labels to output' default_parameters MV_HFV_012.jpg

Whoops! Instead off running the analysis, Sumatra just prints a message
“Code has changed, please commit your changes”. This is because we didn’t commit
our changes to version control. Sumatra ensures that the precise code used for
a given computation is always known. Since our code is different to the
current version in the Mercurial repository, it refuses to run. Let’s try
again:

$ hg commit -m 'Added labels to output'
$ smt run -r 'Added labels to output' default_parameters MV_HFV_012.jpg

Now it works, and we can see in the browser interface that the version is
different.

If you don’t want to commit every small change, you can also ask Sumatra to
store the differences for you. Make another change to the Python script. Then
run:

$ smt configure --on-changed=store-diff
$ $ smt run -r 'made a change' default_parameters MV_HFV_012.jpg

This time, although the code has changed, Sumatra stores the diff for you. Refresh
the web browser and note that the version number for the most recent record has
an asterisk next to it. If you click through to the record detail, there is a link
“diff” which will show you the un-committed changes.

Next steps

This exercise should have demonstrated the basics of using Sumatra to track a
computation-based project. Note that although we have used Python in this
exercise, smt should work with almost any command-line-based program
(although tracking dependencies requires a language-specific plugin).

If you wish to explore further, the documentation is at http://neuralensemble.org/sumatra/.
In particular, you may wish to explore using Sumatra in conjunction with LaTeX
or Sphinx, to include figures generated by Sumatra-tracked computations in your
papers or blog posts, with automatic checking of SHA1 hashes and hyperlinks
to the Sumatra record for the computation that generated the figure.

Bugs and feature requests

If you find a bug in Sumatra or wish to suggest an improvement or a new feature,
please open a ticket in the issue tracker at https://github.com/open-research/sumatra/issues/new

If you fix the bug or implement the improvement yourself, you can either attach
a patch to the ticket, or clone the Sumatra mirror on Github (https://github.com/open-research/sumatra/)
and open a pull request.

 © Copyright 2009-2015 Sumatra authors and contributors.
 Created using Sphinx 1.3.1.

_images/delete_records.png
Delete records

Are you sure you want to remove the selected records?

[Delete associated data

_images/compare_records.png
ﬁ MyProject Comparison

Comparison of 20150526-140238 and 20150526-135236

Code

Ersion 9f99¢c53062cf49bb93e5ab0828d0ce897fccc372 Ersion bac1db1b9ec5c90ffeBaabe59e8a5aab5f56340f
Parameters

u seed: 65785 B seed: 356356546

filename: Data/example.dat

Output data

u example.dat 43a47cb379df2a7008fdeb38c6172278d000fdc4 None 2.4 KB B example2.dat 030089163fb6bfad3edc172ch28ceal27c1368d3 None 2.4 KB

