

 Navigation

 	
 index

 	
 next |

 	Sumatra 0.4.0 documentation

Sumatra: automated tracking of scientific computations

Sumatra is a tool for managing and tracking projects based on numerical
simulation and/or analysis, with the aim of supporting reproducible research.
It can be thought of as an automated electronic lab notebook for computational
projects.

It consists of:

	a command-line interface, smt, for launching simulations/analyses with
automatic recording of information about the experiment, annotating these
records, linking to data files, etc.

	a web interface with a built-in web-server, smtweb, for browsing and
annotating simulation/analysis results.

	a Python API, on which smt and smtweb are based, that can be used in your own
scripts in place of using smt, or could be integrated into a GUI-based
application.

Sumatra is currently beta code, and should be used with caution and frequent
backups of your records.

Table of Contents

	Background

	Installation

	Getting started

	Using the web interface

	Graphical user interfaces

	Parallel simulations

	Using the Sumatra API within your own scripts

	Parameter files

	Upgrading your projects

	Migrating records between record stores

	Developers’ guide

	Frequently asked questions

	Getting support

	Release notes

	Authors and contributors

 Copyright 2009-2012 Andrew P. Davison.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sumatra 0.4.0 documentation

Background

Reproducibility, provenance and project management

Reproducibility of experiments is one of the foundation stones of science.
A related concept is provenance, being able to track a given scientific result,
such as a figure in an article, back through all the analysis steps (verifying
the correctness of each) to the original raw data, and the experimental protocol
used to obtain it.

In computational, simulation- or numerical analysis-based science, reproduction of previous
experiments, and establishing the provenance of results, ought to be easy, given
that computers are deterministic, not suffering from the problems of
inter-subject and trial-to-trial variability that make reproduction of
biological experiments more challenging.

In general, however, it is not easy, perhaps due to the complexity of our code
and our computing environments, and the difficulty of capturing every essential
piece of information needed to reproduce a computational experiment using
existing tools such as spreadsheets, version control systems and paper
noteboooks.

What needs to be recorded?

To ensure reproducibility of a computational experiment we need to record:

	the code that was run

	any parameter files and command line options

	the platform on which the code was run

For an individual researcher trying to keep track of a research project with
many hundreds or thousands of simulations and/or analyses, it is also useful to record the
following:

	the reason for which the simulation/analysis was run

	a summary of the outcome of the simulation/analysis

Recording the code might mean storing a copy of the executable, or the source
code (including that of any libraries used), the compiler used (including version)
and the compilation procedure (e.g. the Makefile, etc.)
For interpreted code, it might mean recording the version of the interpreter
(and any options used in compiling it) as well as storing a copy of the
main script, and of any external modules or packages that are included or
imported into the script file.

For projects using version control, “storing a copy of the code” may be replaced
with “recording the URL of the repository and the revision number”.

The platform includes the processor architecture(s), the operating system(s),
the number of processors (for distributed simulations), etc.

Tools for recording provenance information

The traditional way of recording the information necessary to reproduce an
experiment is by noting down all details in a paper notebook, together with
copies or print-outs of any results. More modern approaches may replace or
augment the paper notebook with a spreadsheet or other hand-rolled database, but
still with the feature that all relevant information is entered by hand.

In other areas of science, particularly in applied science laboratories with
high-throughput, highly-standardised procedures, electronic lab notebooks and
laboratory information management systems (LIMS) are in widespread use, but none
of these tools seem to be well suited for tracking simulation experiments.

Challenges for tracking computational experiments

In developing a tool for tracking simulation experiments, something like an
electronic lab notebook for computational science, there are a number of
challenges:

	different researchers have very different ways of working and different
workflows: command line, GUI, batch-jobs (e.g. in supercomputer
environments), or any combination of these for different components (simulation,
analysis, graphing, etc.) and phases of a project.

	some projects are essentially solo endeavours, others collaborative projects,
possibly distributed geographically.

	as much as possible should be recorded automatically. If it is left to the
researcher to record critical details there is a risk that some details will
be missed or left out, particularly under pressure of deadlines.

The solution we propose is to develop a core library, implemented as a Python
package, sumatra, and then to develop a series of interfaces that build on
top of this: a command-line interface, a web interface, a graphical interface.
Each of these interfaces will enable:

	launching simulations/analyses with automated recording of provenance information;

	managing a computational project: browsing, viewing, deleting simulations/analyses.

Alternatively, modellers can use the sumatra package directly in their own
code, to enable provenance recording, then simply launch experiments in their
usual way.

The core sumatra package needs to:

	interact with version control systems, such as Subversion [http://subversion.tigris.org/], Git [http://git-scm.com], Mercurial [http://www.selenic.com/mercurial], or
Bazaar [http://bazaar-vcs.org];

	support launching serial, distributed (via MPI [http://en.wikipedia.org/wiki/Message_Passing_Interface]) or batch computations;

	link to data generated by the computation, whether stored in files or databases;

	support all and any command-line drivable simulation or analysis programs;

	support both local and networked storage of information;

	be extensible, so that components can easily be added for new version control
systems, etc.

	be very easy to use, otherwise it will only be used by the very conscientious.

Further resources

For further background, see the following article:

Davison A.P. (2012) Automated capture of experiment context for easier
reproducibility in computational research.
Computing in Science and Engineering 14: 48-56 [preprint [http://andrewdavison.info/media/files/reproducible_research_CiSE.pdf]]

You may also be interested in exploring this interactive poster about Sumatra:

[image: images/poster.png]
 [http://fgrz.ro/SnvSHa]or in watching a talk given at a workshop [http://www.stodden.net/AMP2011/] on “Reproducible Research-Tools and Strategies for Scientific Computing” in Vancouver, Canada in July 2011.
[video with slides [http://mediasite.mediagroup.ubc.ca/MediaGroup/Viewer/?peid=291fc2e10e3d4adab212c8949577b32e1d] (Silverlight required)] [video only [http://www.youtube.com/watch?v=7VcDvxvjqrc] (YouTube)] [slides [http://www.stodden.net/AMP2011/slides/sumatra_amp2011.pdf]].

 Copyright 2009-2012 Andrew P. Davison.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sumatra 0.4.0 documentation

Installation

To run Sumatra you will need Python installed on your machine. If you are running
Linux or OS X, you almost certainly already have it. If you don’t have Python,
you can install it from python.org [http://www.python.org], or install one of the
“value-added” distributions aimed at scientific users of Python: Enthought [http://www.enthought.com/products/epd.php] or
Python(x,y) [http://code.google.com/p/pythonxy/].

The easiest way to install Sumatra is directly from the Python Package Index [http://pypi.python.org/pypi/Sumatra/]
(PyPI):

$ pip install sumatra

or:

$ easy_install sumatra

Alternatively, you can download the Sumatra package from either PyPI or the
INCF Software Centre [http://software.incf.org/software/sumatra/download] and install it as follows:

$ tar xzf Sumatra-0.4.0.tar.gz
$ cd Sumatra-0.4.0
python setup.py install

The last step may need to be run as root, or using sudo.

Installing Django

If you wish to use the web interface, you will also need to install Django [http://www.djangoproject.com]. On
Linux, you may be able to do this via your package management system: see
http://code.djangoproject.com/wiki/Distributions.

Otherwise, it is very easy to install manually: see
http://docs.djangoproject.com/en/dev/topics/install/#installing-official-release

You will also need to install the django-tagging [http://pypi.python.org/pypi/django-tagging/] and docutils [http://docutils.sourceforge.net] packages,
which may be in your package management system, otherwise they can be installed
from PyPI:

$ pip install django-tagging
$ pip install docutils

Installing Python bindings for your version control system

Sumatra currently supports Mercurial [http://www.selenic.com/mercurial/], Subversion [http://subversion.tigris.org/], Git [http://git-scm.com/] and Bazaar [http://bazaar.canonical.com/].
If you are using Subversion, you will need to install the pysvn bindings [http://pysvn.tigris.org/project_downloads.html].
Since Mercurial and Bazaar are mostly written in Python, just installing the
main Mercurial/Bazaar packages is sufficient. For Git, you need to install the
GitPython [http://pypi.python.org/pypi/GitPython/] package.

 Copyright 2009-2012 Andrew P. Davison.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sumatra 0.4.0 documentation

Getting started

Let us assume that you already have a project based on numerical simulation,
which you wish to start managing using Sumatra, and that the code for this
project is under version control. Note that the following is equally valid if
your project is based on data analysis rather than, or as well as,
simulation: just mentally replace “simulation” with “analysis” in the following.

Change to the working directory for your project, and then create a new Sumatra
project in this directory using the smt init command:

$ cd myproject
$ smt init MyProject

where MyProject is the project name. This creates a sub-directory named .smt.

Sumatra tracks data files created by your simulation by searching for newly
created files within a given directory tree. By default, it assumes that your
simulation will create files in a sub-directory Data of your working directory.
(You can change this by providing the --datapath option to smt init or
smt configure.)

Now let’s run a simulation. We will assume that your simulation code is written
in Python [http://www.python.org], and that you run the simulation by executing a file called main.py,
passing it the name of a parameter file on the command line, i.e., you would
normally run a simulation using:

$ python main.py default.param

To run it using Sumatra, you would use:

$ smt run --executable=python --main=main.py default.param

Now we can see a list of the simulations we have run:

$ smt list
20121017-114820

This shows the label for each simulation we have run. Since we did not specify
a label, one was automatically generated from the timestamp. To see more detail,
use the --long option:

$ smt list --long
--
Label : 20121017-114820
Timestamp : 2012-10-17 11:48:20.421631
Reason :
Outcome :
Duration : 0.119576931
Repository : GitRepository at /path/to/myproject
Main_File : main.py
Version : 560a4afae1565799a29ca259b6a400aa389e59dd
Script_Arguments : <parameters>
Executable : Python (version: 2.7.1) at /usr/local/bin/python
Parameters : seed = 45245
 : distr = "uniform"
 : n = 100
 : tau_m = 20.0
Input_Data : []
Launch_Mode : serial
Output_Data : [output.dat(dcb86788c2c793804a04e683fae99ad0bac8fb99)]
Tags :

(most options also have a short form, -l in this case.)

It is a bit tedious to have to tell Sumatra which simulator and which file to
run every time. Presumably, the name of the main file changes infrequently and
the simulator almost never. Therefore, these can be set as defaults for a given
project:

$ smt configure --executable=python --main=main.py

(you could also have given these options to smt init. init is used to create
a project and configure to change its configuration later, but they mostly
accept the same arguments).

Now you can run a simulation with a much shorter command line:

$ smt run default.param

To see the current configuration of your project, use the info command:

$ smt info
Project name : MyProject
Default executable : Python (version: 2.7.1) at /usr/local/bin/python
Default repository : GitRepository at /path/to/my/project
Default main file : main.py
Default launch mode : serial
Data store (output) : ./Data
. (input) : /
Record store : Relational database record store using the Django ORM (database file=/path/to/my/project/.smt/records)
Code change policy : error
Append label to : None

Sumatra automatically records the identity and versions of the simulation files
and the simulator executable, stores links to any files created by the
simulation, records any error messages, the date and time at which the simulation
was run, and its duration. You may also add your own annotations, in several
different ways. On running the simulation, you can specify a unique label, and
the reason for which you are running the simulation:

$ smt run --label=haggling --reason="determine whether the gourd is worth 3 or 4 shekels" romans.param

After the simulation is complete, you can add a description of the outcome:

$ smt comment "apparently, it is worth NaN shekels."

This adds the comment to the most recent simulation. You may also describe the outcome
of an earlier simulation, by specifying its label:

$ smt comment 20121017-114820 "Eureka! Nobel prize here we come."

You can also tag a simulation record with one or more short keywords:

$ smt tag foobar
$ smt tag barfoo

and remove tags:

$ smt tag --remove barfoo

The parameter file may be in any format - it is your script which is responsible
for reading it. However, if it is in one of the formats that Sumatra understands
then it is possible to modify parameter values
on the command line. Suppose default.param contains a parameter tau_m = 20.0, as
well as a number of other parameters, then:

$ smt run --reason="test effect of a smaller time constant" default.param tau_m=10.0

will generate a new parameter file identical to default.param but with tau_m
equal to 10.0, and then will pass this new parameter file to your script. This
can be very convenient when you wish to study the effects of changing one or two
parameters, without having to edit your parameter file each time.

One of the main aims of Sumatra is to ensure the reproducibility of simulation
results. The repeat command re-runs a previous simulation, and checks that the
output is identical to that of the original run:

$ smt repeat haggling
The new record exactly matches the original.

Although it is better not to delete simulation records (so as to preserve a full
record of the project, false starts and all), it is possible:

$ smt delete 20121017-123706

It is also possible to delete all simulations with a given tag:

$ smt delete --tag foobar

Most of the commands described here have further options that we have not
described. A full description of the options for each command is given in the
command reference. The full list of commands is
available by running smt by itself:

$ smt
Usage: smt <subcommand> [options] [args]

Simulation/analysis management tool version 0.4.0.dev

Available subcommands:
 init
 configure
 info
 run
 list
 delete
 comment
 tag
 repeat
 diff
 export
 upgrade
 sync

and help on a given command is available by running the command with the --help
option, e.g.:

$ smt comment --help
Usage: smt comment [options] [LABEL] [COMMENT]

This command is used to describe the outcome of the simulation/analysis. If
LABEL is omitted, the comment will be added to the most recent experiment.
If the '-f/--file' option is set, COMMENT should be the name of a file
containing the comment, otherwise it should be a string of text.

Options:
 -h, --help show this help message and exit
 -r, --replace if this flag is set, any existing comment will be
 overwritten, otherwise, the new comment will be appended to
 the end, starting on a new line
 -f, --file interpret COMMENT as the path to a file containing the
 comment

or smt help CMD, where CMD is the name of the command.

This tutorial has covered using smt for serial simulations/analyses. A further tutorial
covers using smt for parallel computations (using MPI [http://en.wikipedia.org/wiki/Message_Passing_Interface]).

Also see smtweb, which provides a more graphical interface to viewing lists
of records than smt list.

 Copyright 2009-2012 Andrew P. Davison.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sumatra 0.4.0 documentation

Using the web interface

The web interface is built using the Django [http://www.djangoproject.com/] web framework, and requires that
Django be installed (see Installation).

Starting the web interface

Before using the web interface, you must have created a Sumatra project using
smt init.

To launch the web interface, in your project directory run:

$ smtweb &

This will launch a simple web server that listens on port 8000, and will
automatically open a new tab in your browser at http://127.0.0.1:8000/. You can
specify the -n option which will disable automatic opening of the new tab:

$ smtweb -n

If port 8000 is already in use, you can specify a different port with the -p
option to smtweb, e.g.:

$ smtweb -p 8001

If you are using a single record store for multiple projects, you can run
smtweb from anywhere and specify the location of the record store
on the command line, e.g.:

$ smtweb ~/sumatra.db

List of projects

When you first start smtweb, the first page you see is a list of
your projects.

[image: _images/project_list.png]

Click on the project name to see the records of your simulations/analyses in
that project.

List of records

The list of records page contains a table with the following columns:

	version control repository

	label

	tags

	reason

	outcome

	duration

	number of processes

	date

	time

	executable name

	executable version

	main file

	version

	command line arguments

You can change which columns to display by clicking on Settings.

[image: _images/settings_dialog.png]

Selecting records

Each record is represented as one row in the table. The rows can be selected
by dragging the mouse over them. As soon as you start doing that, the header
of the table will be changed to contain actions you can perform with selected
records. Actions you can perform are:

	set tags for the selected records

	delete records

	compare records

[image: _images/selecting_rows.png]

Deleting records

When deleting records, you have the option of also deleting any data generated by
that simulation or analysis.

[image: _images/delete_records.png]

Editing tags

For the selected records you can specify additional tags, edit or remove them.

[image: _images/set_tags.png]

Comparing records

From the set of selected records you can choose any two to compare them.

[image: _images/compare_records.png]

Reviewing your code

You can see the contents of your main script file by clicking the corresponding
link in the table. It will be shown in the modal window which can be dragged
around.

Important: for now this works only for Git and Mercurial repositories.

[image: _images/view_main_file.png]

Filtering the records

You can filter the records by clicking on the ‘tag’ button or by using
the search form. This form contains the following items:

	label

	tags

	reason

	executable

	repository

	main file

	date

	interval of dates

[image: _images/search_form.png]

Search by variable name allows filtering the records using the name of parameter. If for each new simulation you have different parameter set, this feature can be useful for narrowing the set of possible records.

Accessing record details

You can access the record detail by clicking the corresponding label name in the
main table. The record detail page contains the following sections:

	general info

	input files

	output files

	parameters

	dependencies

	platform information

	stdout & stderr

[image: _images/detail_view.png]

Finishing up

Don’t forget to kill the webserver process (e.g. with fg, Ctrl-C) when you are
finished with it.

Launching computations from the web interface

It is possible to run simulations/analyses from within the web interface.
Clicking on the “New record” button will bring up the following dialog:

[image: _images/launch_computation1.png]

You can specify label, reason, tag, main file, arguments,
and executable there. Main file and arguments
are drop-down lists with the names of the files from the folder of the Sumatra
project. As soon as the file is picked from the list, you can see its
content. Moreover, the argument file is editable and any changes you
made can be saved from this web page. You can hide and open the content of the
files by clicking the corresponding links below the drop-down list.

[image: _images/launch_computation2.png]

On clicking run, the computation is launched and a progress bar appears. On
succesful completion, a new record is added to the list of records page.

Customizing the web interface

You can customize the web interface on a per-project basis by placing your own
Django templates [http://docs.djangoproject.com/en/1.4/topics/templates/] in a “templates” subdirectory of the Sumatra ”.smt” directory.
The templates you can customize are called “base.html”, “record_list.html”,
“show_file.html”, “project_detail.html”, “show_csv.html”, “show_image.html”,
“record_detail.html”, “show_diff.html”, “tag_list.html”. The best way to proceed
is to copy the default template from “/path/to/sumatra/web/templates”
to “/path/to/myproject/.smt/templates” and then modify it.

 Copyright 2009-2012 Andrew P. Davison.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sumatra 0.4.0 documentation

Graphical user interfaces

Sumatra has a command line interface and a web interface, but does not currently
have a graphical desktop client.

We will probably write one at some point, but we hope that other people will
also write their own, building on top of the tools and functionality provided in
the Sumatra package.

The reason we hope for multiple desktop clients is that everyone has their own
preferred workflow, and it seems unlikely that one graphical interface will
work equally well for everyone.

 Copyright 2009-2012 Andrew P. Davison.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sumatra 0.4.0 documentation

Parallel simulations

As well as launching computations on your local machine, Sumatra can launch
distributed, MPI-based computations on a cluster, at least for simple use-cases.
We assume you already have your hosts files, etc. set up. Then, to run your
simulation on 17 nodes, run:

$ smt run -n 17 default.param

(assuming you have already configured your default executable and main script
file). This will call mpiexec for you with the appropriate arguments.

If this is insufficiently configurable for you, please take a look at the
DistributedLaunchMode class in launch.py within the source
distribution, and get in touch with the Sumatra developers, for example by
creating a ticket [https://neuralensemble.org/trac/sumatra/newticket] or asking a question on the mailing list [http://groups.google.com/group/sumatra-users].

 Copyright 2009-2012 Andrew P. Davison.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sumatra 0.4.0 documentation

Using the Sumatra API within your own scripts

Using the smt run command is quick and convenient, but it does require you to
change the way you launch your simulations/analyses.

One way to avoid this, if you use Python, is to use the sumatra package within your own
scripts to perform the record-keeping tasks performed by smt run.

You may also wish to write your own custom script for creating a Sumatra project,
instead of using smt init, but we do not cover this scenario here.

We will start with a simple example script, a dummy simulation, that reads a
parameter file, generates some random numbers, and writes some data to file:

import numpy
import sys

def main(parameters):
 numpy.random.seed(parameters["seed"])
 distr = getattr(numpy.random, parameters["distr"])
 data = distr(size=parameters["n"])
 output_file = "example.dat"
 numpy.savetxt(output_file, data)

parameter_file = sys.argv[1]
parameters = {}
execfile(parameter_file, parameters) # this way of reading parameters
 # is not necessarily recommended
main(parameters)

Let’s suppose this script is in a file named myscript.py, and that we have a
parameter file named defaults.param, which contains:

seed = 65784
distr = "uniform"
n = 100

Without Sumatra, we would normally run this script using something like:

$ python myscript.py defaults.param

To run the script using the smt command line tool, we would use:

$ smt run --reason="reason for running this simulation" defaults.param

(This assumes we have previously used smt init or smt configure to specify that
our executable is python and our main file is myscript.py.)

To benefit from the functionality of Sumatra without having to use smt run, we
have to integrate the steps performed by smt run into our script.

First, we have to load the Sumatra project:

from sumatra.projects import load_project
project = load_project()

We’re going to want to record the simulation duration, so we import the standard
Python time module and record the start time:

import time
start_time = time.time()

We need to slightly modify the procedure for reading parameters. Sumatra stores
the parameters for later use in searching and comparison, so they need to be
transformed into a form Sumatra can use. This is very simple, we just replace
the execfile() call with a build_parameters() call:

from sumatra.parameters import build_parameters
parameters = build_parameters(parameter_file)

Now we create a new Record object, telling it that the script is the
current file; this automatically registers information about the simulation environment:

record = project.new_record(parameters=parameters,
 main_file=__file__,
 reason="reason for running this simulation")

Now comes the main body of the simulation, which is unchanged except that we
take the opportunity to give the output data file a more informative name by
adding the record label to the parameter file:

output_file = "%s.dat" % parameters["sumatra_label"]

At the end of the simulation, we
calculate the simulation duration and search for newly created files:

record.duration = time.time() - start_time
record.output_data = record.datastore.find_new_data(record.timestamp)

Now we add this simulation record to the project, and save the project:

project.add_record(record)
project.save()

Putting this all together:

import numpy
import sys
import time
from sumatra.projects import load_project
from sumatra.parameters import build_parameters

def main(parameters):
 numpy.random.seed(parameters["seed"])
 distr = getattr(numpy.random, parameters["distr"])
 data = distr(size=parameters["n"])
 output_file = "%s.dat" % parameters["sumatra_label"]
 numpy.savetxt(output_file, data)

parameter_file = sys.argv[1]
parameters = build_parameters(parameter_file)

project = load_project()
record = project.new_record(parameters=parameters,
 main_file=__file__,
 reason="reason for running this simulation")
parameters.update({"sumatra_label": record.label})
start_time = time.time()

main(parameters)

record.duration = time.time() - start_time
record.output_data = record.datastore.find_new_data(record.timestamp)
project.add_record(record)

project.save()

Now you can run the simulation in the original way:

python myscript.py defaults.param

and still have the simulation recorded in your Sumatra project. For such a
simple script and simple run environment there is no advantage to doing it this
way: smt run is much simpler. However, if you already have a fairly complex run
environment, this provides a straightforward way to integrate Sumatra’s
functionality into your existing system.

You will have noticed that much of the Sumatra code you have to add is
effectively boilerplate, which will be the same for all your scripts. To save time,
and typing therefore, Sumatra provides a @capture decorator for your
main() function:

import numpy
import sys
from sumatra.parameters import build_parameters
from sumatra.decorators import capture

@capture
def main(parameters):
 numpy.random.seed(parameters["seed"])
 distr = getattr(numpy.random, parameters["distr"])
 data = distr(size=parameters["n"])
 numpy.savetxt("%s.dat" % parameters["sumatra_label"], data)

parameter_file = sys.argv[1]
parameters = build_parameters(parameter_file)
main(parameters)

This is now hardly any longer than the original script.

 Copyright 2009-2012 Andrew P. Davison.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sumatra 0.4.0 documentation

Parameter files

There is no requirement to put parameters in a separate file to use Sumatra,
nor is it required to use a particular parameter file format. However, if you
do use one of the formats Sumatra supports then you will gain extra
functionality: currently, the ability to modify/add parameters on the command
line and to have Sumatra automatically add the record label to the parameter
file; in future versions, the ability to search and filter your records based
on parameters.

Supported formats

Simple

Each parameter on a separate line, in “name = value” format. Values may be
numbers, strings or lists (denoted with square brackets, comma-separated).
Comments are indicated by a leading “#”. Example:

Example parameter file
nx = 10 # } grid
ny = 12 # } size
inputs = [1e-3, 2e-3, 5e-3, 1e-2]
label = "default"

Config/ini-style

Traditional config file format, as parsed by the standard Python ConfigParser [http://docs.python.org/library/configparser.html]
module. Note that this format does not distinguish numbers from string
representations of those numbers, so all parameter values are treated as
strings. This format allows one level of nesting: you can create sections within
which you can define parameters. Comments are indicated by a leading “#”.
Example:

[sectionA]
 a: 2
 b: 3

[sectionB]
 c: hello
 d: world

See the ConfigParser [http://docs.python.org/library/configparser.html] docs for more details.

JSON

See http://www.json.org/.

NeuroTools format

NeuroTools parameter format [http://neuralensemble.org/trac/NeuroTools/wiki/parameters] is essentially the same as JSON, but with the
addition of a url() function which allows sub-parameter sets to be
included from other files. Example:

{
 "network": {
 "excitatory_cells": url("https://neuralensemble.org/svn/NeuroTools/trunk/doc/example.param")
 "inhibitory_cells": {
 "tau_m": 15.0,
 "cm": 0.75,
 },
 },
 "sim": {
 "tstop": 1000.0,
 "dt": 0.11,
 }
}

Adding new formats

If your parameter file format is not supported by Sumatra, there is no problem:
Sumatra will treat your parameter file as any other input data file and pass it
directly through to your simulation/analysis script.

However, it is fairly straightforward to add support for a new format. You will
need to write a Python class according to the following skeleton:

class MyParameterSet(object):

 def __init__(self, initialiser):
 # initialiser could be either a filesystem path or a string containing
 # the contents of your parameter file, and should raise a SyntaxError
 # if it cannot make sense of the contents.

 def __getitem__(self, name):
 # return the parameter or sub-parameter set with the given name

 def __eq__(self, other):
 # must be implemented

 def __ne__(self, other):
 # must be implemented

 def as_dict(self):
 # return the parameter set as a Python dict containing only numerical
 # types, lists, or other dicts.

 def save(self, filename):
 # self-explanatory

 def pop(self, k, d=None):
 # same behaviour as Python dict

 def update(self, E, **F):
 # same behaviour as Python dict

 def pretty(self, expand_urls=False):
 # Return a string representation of the parameter set, suitable for
 # creating a new, identical parameter set.
 # expand_urls is present for compatibility with NTParameterSet, and need
 # not be used.

For this version of Sumatra, you will have to include this class within the
file parameters.py of your Sumatra installation, or send it to the
developers to include in the Sumatra repository (see Developers’ guide),
as well as editing the build_parameters() function within parameters.py
so that it tries to use your class. In the next version of Sumatra, we plan to
include a plugin system which will greatly simplify adding your own
customizations.

 Copyright 2009-2012 Andrew P. Davison.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sumatra 0.4.0 documentation

Upgrading your projects

Since new versions of Sumatra extend its capabilities, and may change the way
records are stored, when you install a new version of Sumatra you will need to
upgrade your existing Sumatra projects to work with the new version.

In future, this will probably be done automatically, but while Sumatra is still
rapidly evolving we are keeping it as a simple manual process to minimize the
risk of data loss.

Export using the old version

Before installing the new version of Sumatra, you must export your project to a
file.

For Sumatra 0.1-0.3

First, download export.py [http://neuralensemble.org/trac/sumatra/browser/tools/export.py?format=txt] to your project directory, then run:

$ python export.py

This will export your project in JSON format to two files in the .smt directory:
records_export.json and project_export.json.

You can now delete export.py

For Sumatra 0.4 and later

Run:

$ smt export

This will export your project in JSON format to two files in the .smt directory:
records_export.json and project_export.json.

Install the new version and upgrade

Now you can install the new version, e.g. with:

$ pip install --upgrade sumatra

or:

$ easy_install -U sumatra

(or you can install from source, as explained in doc:installation`).

Then run:

$ smt upgrade

The original .smt directory will be copied to a time-stamped directory, e.g.
.smt_backup_20110209132422

 Copyright 2009-2012 Andrew P. Davison.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sumatra 0.4.0 documentation

Migrating records between record stores

Sumatra supports multiple back-ends for storing records, ShelveRecordStore,
based on the shelve module from the Python standard library,
DjangoRecordStore, based on a relational database accessed via the Django [http://www.djangoproject.com/]
ORM [http://en.wikipedia.org/wiki/Object-relational_mapping], and HttpRecordStore, which stores records on a remote database
with communication based on JSON over HTTP.

Suppose you created a Sumatra project using the ShelveRecordStore since you
didn’t want to install Django, then decided you’d like to change to
DjangoRecordStore. This is what the project looks like at the beginning:

$ smt info
Sumatra project

Name : MyProject
Default executable : Python (version: 2.5.2) at /usr/local/bin/python
Default repository : MercurialRepository at /path/to/working/directory
Default main file : main.py
Default launch mode : serial
Data store : /path/to/data
Record store : Record store using the shelve package (database file=.smt/records)
Code change policy : store-diff
Append label to : cmdline
$ smt list
20110309-141853
20110309-141849

First, rename the ”.smt” directory, and then create a new project:

$ mv .smt .smt_orig
$ smt init MyProject --addlabel cmdline --executable=python --on-changed=store-diff --main=main.py

Now we synchronize the old and new databases:

$ smt sync .smt_orig/records

and just to check it worked:

$ smt info
Sumatra project

Name : MyProject
Default executable : Python (version: 2.5.2) at /usr/local/bin/python
Default repository : MercurialRepository at /path/to/working/directory
Default main file : main.py
Default launch mode : serial
Data store : /path/to/data
Record store : Relational database record store using the Django ORM (database file=.smt/records)
Code change policy : store-diff
Append label to : cmdline
$ smt list
20110309-141853
20110309-141849

 Copyright 2009-2012 Andrew P. Davison.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sumatra 0.4.0 documentation

Developers’ guide

These instructions are for developing on a Unix-like platform, e.g. Linux or
Mac OS X, with the bash shell.

Requirements

	Python [http://www.python.org] 2.6 and/or 2.7

	Django [http://www.djangoproject.com/] >= 1.2

	django-tagging [http://code.google.com/p/django-tagging/] >= 0.3

	nose [http://somethingaboutorange.com/mrl/projects/nose/] >= 0.11.4

	if using Python 2.6, unittest2 [http://pypi.python.org/pypi/unittest2] >= 0.5.1

	Distribute [http://pypi.python.org/pypi/distribute] >= 0.6.14

	(optional) mpi4py [http://mpi4py.scipy.org/] >= 1.2.2

	(optional) tox [http://codespeak.net/tox/] >= 0.9 (makes it easier to test with multiple Python versions)

	(optional) twill [http://twill.idyll.org/] >= 0.9 (needed for testing web interface)

	(optional) coverage [http://nedbatchelder.com/code/coverage/] >= 3.3.1 (for measuring test coverage)

Getting the source code

We use the Mercurial version control system. To get a copy of the code:

$ cd /some/directory
$ hg clone https://neuralensemble.org/hg/sumatra sumatra_src

Now you need to make sure that the sumatra package is on your PYTHONPATH and
that the smt and smtweb scripts are on your PATH. You can do this either
by installing Sumatra:

$ cd sumatra_src
$ python setup.py install

(if you do this, you will have to re-run setup.py install any time you make
changes to the code) or by creating symbolic links from somewhere on your PATH
and PYTHONPATH, for example:

$ cd /some/directory
$ ln -s sumatra_src/src sumatra
$ export PYTHONPATH=/some/directory:${PYTHONPATH}
$ export PATH=/some/directory/sumatra_src/bin:${PATH}

To update to the latest version from the repository:

$ hg pull -u

Running the test suite

Before you make any changes, run the test suite to make sure all the tests pass
on your system:

$ cd sumatra_src/test/unittests
$ nosetests

You will see some error messages, but don’t worry - these are just tests of
Sumatra’s error handling. At the end, if you see “OK”, then all the tests
passed, otherwise it will report how many tests failed or produced errors.

$ cd ..
$ python smt_test.py
$ python smtweb_test.py

Writing tests

You should try to write automated tests for any new code that you add. If you
have found a bug and want to fix it, first write a test that isolates the bug
(and that therefore fails with the existing codebase). Then apply your fix and
check that the test now passes.

To see how well the tests cover the code base, run:

$ nosetests --coverage --cover-package=sumatra --cover-erase

Committing your changes

Once you are happy with your changes, you can commit them to your local copy of
the repository:

$ hg commit -m 'informative commit message'

If you have a NeuralEnsemble account, you can now push your changes to the
central repository:

$ hg push https://neuralensemble.org/hg/sumatra

Otherwise, you can create a patch:

$ hg export tip > descriptive_name.patch

and attach it to a ticket in the issue tracker [http://neuralensemble.org/trac/sumatra]. If you have made more than
one commit, determine the revision number of when you cloned or last updated
from the central repository (using hg log), and then give a range of
revisions to include in the patch:

$ hg export start-revision:tip > descriptive_name.patch

Before either pushing or creating a patch, run the test suite again to check
that you have not introduced any new bugs.

Coding standards and style

All code should conform as much as possible to PEP 8 [http://www.python.org/dev/peps/pep-0008/], and should run with
Python 2.6 and 2.7.

 Copyright 2009-2012 Andrew P. Davison.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sumatra 0.4.0 documentation

Frequently asked questions

Where does the name “Sumatra” come from?

It is based on the initial letters of “Simulation Management Tool”.
(Sumatra was originally conceived for tracking simulations, it was only later
that I realized it could equally well be used for any command-line driven
computation). Despite a certain geographical proximity [http://commons.wikimedia.org/wiki/File:1842_Greenleaf_Map_of_the_East_Indies,_Borneo,_Java,_Sumatra,_Thailand,_Vietnam_-_Geographicus_-_EastIndies-greenleaf-1842.jpg], it has nothing to do
with Java :-)

When I run more than one simulation at once, Sumatra mixes up the output files. How can I make it associate the right files with the right simulation?

When you run a simulation/analysis, Sumatra looks for any new files within your
datastore root directory, and associates them with your computation. This means
that if you launch a second computation before the first one has finished
Sumatra can’t distinguish which files were produced by which computation. The
solution is to save the results for a given computation in a subdirectory whose
name is a unique id, and for Sumatra to look only in this subdirectory for
output files.

The easiest way to do this is to use the record label. First run:

$ smt configure --addlabel=cmdline

or:

$ smt configure --addlabel=parameters

Then Sumatra will add the record label (which is generated from the timestamp
unless you use the ‘--label‘ option to smt run) to either the command
line or the parameter file for your script. It is then up to your script to
read this value and use it to name your output files accordingly. Here is an
example for a Python script, using the cmdline option and ”./Data” set as
the datastore root:

import sys
import os.path
options = sys.argv[1:]
label = options[-1] # label is added to the end of the command line

computations happen here, results stored in `output_data`

output_dir = os.path.join("Data", label)
with open(os.path.join(output_dir, "mydata.txt"), 'w') as fp:
 fp.write(output_data)

 Copyright 2009-2012 Andrew P. Davison.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sumatra 0.4.0 documentation

Getting support

If you have a question about, or problems with using Sumatra, please post a
message on either the sumatra-users [http://groups.google.com/group/sumatra-users] or neuralensemble [http://groups.google.com/group/neuralensemble] Google Groups.

 Copyright 2009-2012 Andrew P. Davison.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sumatra 0.4.0 documentation

Release notes

	Sumatra 0.4.0 release notes

 Copyright 2009-2012 Andrew P. Davison.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sumatra 0.4.0 documentation

 	Release notes

Sumatra 0.4.0 release notes

October 18th 2012

Welcome to Sumatra 0.4.0!

Overview

The biggest change in Sumatra 0.4 is the redesign of the browser-based interface,
launched with smtweb. Thanks to the Google Summer of Code [http://www.google-melange.com/gsoc/homepage/google/gsoc2012] program,
Dmitry Samarkanov was able to spend his summer working on improving Sumatra, with
the results being a much improved web interface, better support for running
Sumatra on Windows, and better support for running Matlab scripts with Sumatra.
Many thanks to Google and to the INCF [http://www.incf.org] as mentoring organisation. In addition to
Dmitry’s improvements, handling of input and output data files is much improved,
and Sumatra now captures and stores standard output (stdout) and standard error
(stderr) streams. More details on all of these, plus a bunch of minor
improvements and bug fixes, is given below. Finally, Sumatra no longer supports
Python 2.5 - the minimum requirement is Python 2.6.

Web interface

The Sumatra browser-based interface runs a local webserver on your computer,
and allows you to browse the information that Sumatra captures about your
analyses, simulations or other computations, including code versions, input
and output data files, parameter/configuration files, the operating system and
processor architecture.

The interface has been completely redesigned for Sumatra 0.4, and includes
dozens of large and small improvements, including:

	a more modern, attractive design

	the ability to select which columns to display in the record list view

	the ability to search all of your records based on date, tags or full-text

	side-by-side comparison of records

	sorting of records based on any column

	selection of multiple records by clicking or dragging for deletion, comparison and tagging

Furthermore, it is now possible to launch computations from the browser interface.

For more information, see Using the web interface and this blog post [http://samarkanov.com/blog/xxx] from Dmitry
Samarkanov.

Data file handling

In earlier versions of Sumatra, the filename (or rather, the file path relative
to a user-defined root) was used as the identifier for input and output data
files. The problem with this, of course, is that it is possible to overwrite a
given file with new data. For this reason, Sumatra 0.4 now calculates and stores
the SHA1 hash of the file contents. If the file contents change, the hash will
also change, so that Sumatra can alert you if a file is accidentally overwritten,
for example.

Sumatra 0.4 also adds a new data store which automatically archives a copy of
the output data from your computations in a user-selected location. This data
store is accessible through the API as the ArchivingFileSystemDataStore
class, or through the smt command-line interface with the “–archive”
option to the “init” and “configure” commands.

Finally, Sumatra now allows the user the choice of whether to use an absolute or
relative path for the data store root directory. Using a relative path makes
projects easier to move and easier to access from other locations (e.g. with
symbolic links or NFS).

Matlab support

Sumatra can capture certain information for any command-line tool: input and
output data, version of the main codebase, operating system and processor
architecture, etc. For dependency information, however (i.e. which libraries,
modules or packages are imported/included by your main script), a separate
plugin is required for each language. Sumatra already has a dependency tracking
plugin for Python and for two computational neuroscience simulation environments,
NEURON and GENESIS. Sumatra 0.4 adds dependency tracking for Matlab scripts.

Recording of stdout and stderr

Sumatra 0.4 now supports recording and storage of the standard output and
standard error streams from your scripts.

Other new features

	added support for JSON-format parameter files;

	added smt export command, which allows the contents of a Sumatra
record store to be exported in JSON format;

	more information is now printed by smt list --long;

	the Python dependency finder now supports scripts run with Python 3 (although
Sumatra itself still needs Python 2);

	can now specify HttpRecordStore username and password as part of the
URL passed to smt init;

	added support for markup using reStructuredText in the project description

	it is no longer required to have a script file, which makes it possible to
use Sumatra with your own compiled executables. Further support for compiled
languages is planned for the next release.

Bug fixes

A whole bunch of bugs [https://neuralensemble.org/trac/sumatra/query?status=closed&group=resolution&milestone=0.4] were fixed in Sumatra 0.4.

 Copyright 2009-2012 Andrew P. Davison.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Sumatra 0.4.0 documentation

Authors and contributors

The following people have contributed code to Sumatra. The institutional
affiliations are those at the time of the contribution, and may not be the
current affiliation of a contributor.

	Andrew Davison [1]

	Dmitry Samarkanov [2]

	Bartosz Telenczuk [1, 3]

	Michele Mattioni [4]

	Eilif Muller [5]

	Konrad Hinsen [6]

	Stephan Gabler [7]

	Takafumi Arakaki [8]

	Unité de Neuroscience, Information et Complexité, CNRS UPR 3293, Gif-sur-Yvette, France

	Ecole Centrale de Lille, Lille, France

	Institute for Theoretical Biology, Humboldt University zu Berlin, Berlin, Germany

	European Bioinformatics Institute, Hinxton, UK

	Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

	Centre de biophysique moléculaire, CNRS UPR 4301, Orléans, France

	Max Planck Institute for Human Development, Berlin, Germany

	Laboratoire de Neurophysique et Physiologie, CNRS UMR 8119, Université Paris Descartes, Paris, France

If I’ve somehow missed you off the list I’m very sorry - please let us know.

Many thanks also go to everyone who has reported bugs on the issue tracker.

Licence

Sumatra is freely available under the CeCILL v2 license, which is equivalent to,
and compatible with, the GNU GPL license, but conforms to French law (and is
also perfectly suited to international projects) - see
http://www.cecill.info/index.en.html for more information.

If you are interested in using Sumatra, but the choice of licence is a problem
for you, please contact us - we are open to persuasion.

 Copyright 2009-2012 Andrew P. Davison.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Sumatra 0.4.0 documentation

Index

 Copyright 2009-2012 Andrew P. Davison.
 Created using Sphinx 1.3.1.

 _static/minus.png

_static/down.png

_static/file.png

_images/compare_records.png
Comparison of simulations
Glick the records you would like to compare:

20121017-133237

Reason
Outcome:

Timestamp: 177102012 13:32:37

Duration: 0126

Executable: Python version 2.7.1 (home/andrew/env/sumaira_py27_djangol3/bin/python)
Launch mode: serial

Repository: Inome/andrewitmplexample

Main fie: main.py

Version: 41407c334b4dT1106a9C5655a804bCCT558BT4

Arguments: seed = 45245

distr = "uniforn"
n =100

Tags
Input fles: o input files
Output files: /Data

oulpu. dat dcbB67882c793804a04e6831as99ad0baCAb99 2.4 KB
Dependencies. o S

Ihome/andrew/env/sumatra_py27_django13
Mibipython2. 7rdistutils

Ihome/andrew/envisumatra_py27_django13
Iiblpython2. 7fencodings

Ihome/andrew/env/sumatra_py27_django13
Tocalllib/python2.7isite-packagesTnose

Ihome/andrew/envisumatra_py27_django13
Tocalllib/python2.7/site-packages/numpy

distutils

encodings

Platform information:

1702012 13:32:01
013

Python version 2.7.1 (home/ancrewlenv/sumaira_py21_django13/bin/python)
sera

Inomelandrewmplexample

main.py

41497C334p4011106a9C5€55a894bCC55D58EBT4

seed = 348570
distr = "uniforn"
n =100

foobar, figure 7
no input files

/Data

output.dat b8C62032b5175b8I4CCEBIOCITAII50BaB2a04 2.4 KB
Name Path

Ihome/andrew/env/sumatra_py27_django13
Mibipython2. 7rdistutils

Ihome/andrew/envisumatra_py27_django13
Iiblpython2. 7fencodings

Ihome/andrew/env/sumatra_py27_django13
Tocalllib/python2.7isite-packagesTnose

Ihome/andrew/envisumatra_py27_django13
Tocalllib/python2.7/site-packages/numpy

distutils

encodings

_images/selecting_rows.png
2records delete records

edit tags.

compare simulations.

Eurekal Nobel
prize here we.
come.

0125

0125

171012012

171012012

13:32:37

13:32:32

Python

Python

271

271

main.py

main.py

<param;

parameter

parameter

1-4014

_images/settings_dialog.png
Display densiy:
Comfortable
Compact

UADIE ool version Ar
Settings

s program.py <parameters>

_images/set_tags.png
M MyProject 1-40f4

2recods deleterecords edittags compare simulations

20121017-133237 <parameters>

20121017-133232 <parameters>

_static/comment.png

managing_a_project.html

 Navigation

 		
 index

 		Sumatra 0.4.0 documentation »

Managing a research project with Sumatra

Setting up your project

Telling Sumatra about your code

Handling input and output data

Storing Sumatra records

Running your code

Viewing and searching results

Relocating a project

For Mercurial, Git and Bazaar:

$ smt configure -r .

If you are also moving the data, i.e. your datastore was the same as, or a
subdirectory of your working directory, there is at present no easy way to handle this,
since each record contains the absolute path to the original datastore.

 © Copyright 2009-2012 Andrew P. Davison.
 Created using Sphinx 1.3.1.

_images/detail_view.png
General info
Labe: 2012107133232
Reason:

Eurekal Nobel prize here we come.

Outcome:
Timestamp: 17/10/2012 13:32:32
Duration: 0125

Executable: Python version 2.7.1 (home/andrew/env/sumatra_py27_django13/bin/python)

Launch mode: ~ serial

Repository: /home/andrew/tmp/example
Main file: main.py
Versio 11497C334D40110630C5e553804bCCEEb582674

<parameters>

Delete record

Input files

no input files

Output files

/Data
OUtpuL dat dchB6788C2c793804a0426831a299ad0bacE b0 2.4 KB

Parameters

uniform
100
Dependencies
Name Path Version
distutils Ihomesancrewlenvisumatra_py27_djangoL3/blpython2.7idistuts 271
encodings Inomelancrewlenvisumatra_py27_dangoL3/iblpython2.7iencodings unknown
nose Ihomeancrewienvisumatra_py27_djangol3localibipytion?.isite-packagesinose 112
numpy Inomelancrewlenvisumatra_py27_djangol3localibipython2.Tisite-packages/numpy 162

Platform information

Name 1P address Processor Architecture System type Release
retina 127011 X86_64 %8664 st ELF Linux 2638 11-generic
Stdout & Stderr

No output

Version

#50-Ubuntu SMP Mon Sep 12 21:17:25 UTC 2011

search.html

 Navigation

 		
 index

 		Sumatra 0.4.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2009-2012 Andrew P. Davison.
 Created using Sphinx 1.3.1.

_images/launch_computation1.png
New computation &«

Laber \
Reson [maro Ramans
e om_ranser \

Excutatl et | yon

I

Main file main.py
‘show content

I

Arguments fomans.param
‘show content

Run

_images/search_form.png
Repository

Label

haggling_re

haggling
201210174

201210174

Tags:

Reason
Exeoutable: =l
Repository. =l
Man fe:

Date:

Date within: 1day of

1-a014
Processes Date Time. Exccilaiics g Dxeoitbie gl Version Arguments
name version file
1 o202 133249 Python 271 main.py <parameters>
1 o212 133241 Pyton 271 main.py <parameters>
1 o2 133237 Pyton 271 main.py <parameters>
1 o2 133232 Pyton 271 main.py <parameters>

_static/comment-bright.png

_images/launch_computation2.png
@ search =

New computation romans.param
Label

Reason more Romans
Tag from_browser

Executable path | python

Main file main.py -
show content

Arguments fomans.param

hide content

Run

_static/sumatra_logo.png
Sumatra

_images/project_list.png
MyProject

_images/delete_records.png
1-4014

2records deleterecords edittags compare simulations

_static/plus.png

_images/view_main_file.png
main.py: d1497¢334b4df1f06a9c5e55a894bcc55b58e874

lrecords deleterecords edittags compare simulations

ot main(paraneters

naggiing_repeat faure 7, foobar, O EEIE G [2) main.py g parameter.
F(nunpy. randon, paranete

figure 7 foobar rameters["n"]) main.py <parameter

2 main.py parameter.

2 Eurekal Nobel main.py g parameter

arameter_f.

prize here we'
come. arameters

ecfile(parameter)

rain(parametef

_static/down-pressed.png

_static/comment-close.png

_static/up.png

_static/ajax-loader.gif

_static/up-pressed.png

